# Two Line Element Predictor
### Author: Tan Ren Jie
### Dated: 11 May 2018
[Two Line Elements (TLE)](https://en.wikipedia.org/wiki/Two-line_element_set)[1] is a data format widely used to track objects orbiting Earth. Encoded in the TLE is the 6-D state vectors, [BSTAR](https://en.wikipedia.org/wiki/BSTAR)[2] drag term, first and second derivative of the mean motion, and other miscellaneous of the object. <br>
There are various established propagation models such as SGP, SGP4, SDP4, SGP8 and SDP8 which are used to predict the future state vectors of the satellites. However, due to the inherent uncertainties of the TLE, this error gets propagated through time as well. For example, a typical TLE downloaded from [Celestrak](https://celestrak.com/)[3], the momentum vector components, Px, Py, Pz, could, on average, carry an uncertainty of +-10km/h. After a day, the uncertainty would be then +-240km/h which is not ideal. Very often, the state vectors produced by such propagation models are not accurate and cannot be used after a day of simulation. They have to be refreshed by getting new TLEs. <br>
Because of this uncertainties, there are a lot of cry wolf cases. Celestrak offers free reporting of conjuction analysis of satellite payloads with its platform called [Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space](https://celestrak.com/SOCRATES/) (SOCRATES)[5]. From there you can download AGI viewer files to fun STK/CAT simulation of conjuction analysis reports. <br>
The event that shook the space world is the first reported payload-to-payload collision in the history of spaceflight. On February 10, 2009, the satellite communications company Iridium lost contact with one of its spacecraft, Iridium 33. Earlier that day, Iridium had received a prediction of a close approach of 584 m (1,916 ft) between Iridium 33 and another orbiting spacecraft, the non-operational Russian communications satellite Cosmos 2251. Iridium had received close approach reports before, and the one on February 10 was not particularly alarming or deemed a “top predicted close approach” compared to other predicted close-approach events for that week. Nevertheless, at the time the close approach was predicted to occur above northern Siberia, Iridium abruptly stopped receiving telemetry from its spacecraft [4]. <br>
## About this project
This is just a toy concept to test out a statistical approach to predict TLE instead of the conventional propagation model. As the cadence of TLE updates is high (~ twice daily), this source of data is suitable for times series analysis or machine learning techniques. In this repo, I would present a simple Linear Regression to predict TLE. As the regression model does not factor in physical laws of Newtonian, the above mentioned error propagation through time of the momentum would not apply.
## Time plots of TLE components
![sat41169](figures/sat41169.png)
<p align = "center">
Fig.1 Time plots of the TLE components for sat41169
</p>
![sat39227](figures/sat39227.png)
<p align = "center">
Fig.2 Time plots of the TLE components for sat39227
</p>
## Prediction of Linear Regression Model
![Trained Linear Regression Model](figures/Training.png)
<p align = "center">
Fig.3 Trained Linear Regression Model for sat41169
</p>
![Prediction Results](figures/Prediction.png)
<p align = "center">
Fig.3 Prediction Results for sat41169
</p>
# References
[1] Two Line Element https://en.wikipedia.org/wiki/Two-line_element_set <br>
[2] BSTAR Drag Term https://en.wikipedia.org/wiki/BSTAR <br>
[3] Celestrak https://celestrak.com/ <br>
[4] Iridium and Cosmos 2251 Collision https://www.nap.edu/read/13244/chapter/11#66 <br>
[5] SOCRATES https://celestrak.com/SOCRATES/ <br>
没有合适的资源?快使用搜索试试~ 我知道了~
TLE:可以绘制给定卫星的TLE并训练线性回归模型以预测未来卫星的状态向量的Python脚本
共36个文件
txt:11个
pyc:8个
py:6个
需积分: 49 11 下载量 36 浏览量
2021-05-16
19:49:16
上传
评论
收藏 2.33MB ZIP 举报
温馨提示
两线元素预测器 作者:tanh仁杰 日期:2018年5月11日 [1]是一种广泛用于跟踪绕地球轨道飞行的物体的数据格式。 在TLE中编码的是6维状态向量, [2]阻力项,平均运动的一阶和二阶导数以及对象的其他杂项。 存在各种已建立的传播模型,例如SGP,SGP4,SDP4,SGP8和SDP8,这些模型用于预测卫星的未来状态向量。 但是,由于TLE固有的不确定性,该错误也会随着时间传播。 例如,从 [3]下载的典型TLE,动量矢量分量Px,Py,Pz平均可以具有+ -10km / h的不确定性。 一天之后,不确定性将为+ -240 km / h,这是不理想的。 通常,由这种传播模型产生的状态向量是不准确的,并且在一天的模拟之后无法使用。 必须通过获取新的TLE来刷新它们。 由于这种不确定性,有很多哭狼案。 Celestrak借助其称为“ (SOCRATES)的平台,免费提供对卫星有效
资源详情
资源评论
资源推荐
收起资源包目录
TLE-master.zip (36个子文件)
TLE-master
figures
sat39227.png 179KB
sat41169.png 329KB
Prediction.png 99KB
Training.png 252KB
data
sat39227.txt 544KB
sat41169test27junto7jul.txt 2KB
sat41169.txt 133KB
testT16Jul17.txt 139B
sat41167.txt 113KB
__pycache__
tle.cpython-36.pyc 6KB
LinearRegressionCode.cpython-35.pyc 3KB
LinearRegressionCode.cpython-36.pyc 3KB
tle.cpython-35.pyc 7KB
miscs
things to do.txt 147B
StatsSheet.txt 509B
LICENSE 1KB
src
predictor.py 10KB
LinearRegressionCode.py 3KB
__pycache__
tle.cpython-36.pyc 6KB
LinearRegressionCode.cpython-36.pyc 3KB
predictor.cpython-36.pyc 7KB
__init__.cpython-36.pyc 149B
__init__.py 0B
tle.py 8KB
setup.py 119B
README.md 4KB
notebooks
TLE Analysis.ipynb 159KB
Narrative.ipynb 3.8MB
.ipynb_checkpoints
Narrative-checkpoint.ipynb 1008KB
TLE Analysis-checkpoint.ipynb 159KB
StatsSheet.txt 509B
src.egg-info
PKG-INFO 177B
LinearRegressionCode.py 3KB
SOURCES.txt 117B
top_level.txt 1B
dependency_links.txt 1B
共 36 条
- 1
花菌子
- 粉丝: 28
- 资源: 4578
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论0