# ANFIS in pyTorch #
This is an implementation of the ANFIS system using pyTorch.
### ANFIS
ANFIS is a way of presenting a fuzzy inference system (FIS) as a
series of numeric layers so that it can be trained like a neural net.
The canonical reference is the original paper by
[Jyh-Shing Roger Jang](http://mirlab.org/jang/):
* Jang, J.-S.R. (1993). "ANFIS: adaptive-network-based fuzzy inference
system". IEEE Transactions on Systems, Man and Cybernetics. 23 (3):
665–685. doi:10.1109/21.256541
Note that it assumes a Takagi Sugeno Kang (TSK) style of
defuzzification rather than the more usual Mamdani style.
### Background: other implementations
The original C code from Jang that implements the ANFIS system, along
with is test cases, is available from
[a repository at CMU](https://www.cs.cmu.edu/Groups/AI/areas/fuzzy/systems/anfis/).
The version most people seem to use is the
[ANFIS library for Matlab](https://www.mathworks.com/help/fuzzy/anfis.html).
Their [documentation](https://www.mathworks.com/help/fuzzy/neuro-adaptive-learning-and-anfis.html) is quite helpful for understanding how ANFIS works,
even if you don't use Matlab.
There's an implementation for the R language by Cristobal Fresno and Elmer
A. Fernandez of the
[BioScience Data Mining Group](http://www.bdmg.com.ar/?page_id=176)
in Argentina (that URL seems a bit unstable).
Again, their documentation is very helpful, particularly
the "ANFIS vignette" report that comes with the distribution (I've put a
[local copy](./Anfis-vignette.pdf) here). It
shows how to run the system using examples from Jang's paper, and gives
some of the results.
I also found a re-implementation of this R code in Python
[anfis](https://github.com/twmeggs/anfis) by Tim Meggs that was helpful
in understanding the original R code.
### Navigation
The ANFIS framework is mainly in three files:
* [anfis.py](./anfis.py) This is where the layers of the ANFIS system
are defined as Torch modules.
* [membership.py](./membership.py) At the moment I only have Bell and
Gaussian membership functions, but any others will go in here too.
* [experimental.py](./experimental.py) The experimental infrastructure
to train and test the FIS, and to plot some graphs etc.
There are then some runnable examples:
* [jang_examples.py](./jang_examples.py) these are four
examples from Jang's paper (based partly on the details in the
paper, and particle on the example folders in his source code
distribution).
* [vignette_examples.py](./vignette_examples.py) these are
three examples from the Vignette paper. Two of these use Gaussians
rather than Bell MFs.
### Installation
You need to install Python and PyTorch, nothing special.
I'm using
[Python 3.6.5](https://www.python.org/downloads/),
the [Anaconda 4.6.11](https://www.anaconda.com/distribution/) distribution
and [PyTorch](https://pytorch.org) version 1.0.1.
### Author ###
* [James Power](http://www.cs.nuim.ie/~jpower/), Maynooth University.
没有合适的资源?快使用搜索试试~ 我知道了~
anfis-pytorch:使用pyTorch框架实现ANFIS
共31个文件
py:16个
txt:7个
xml:1个
需积分: 48 29 下载量 71 浏览量
2021-05-09
04:43:52
上传
评论 9
收藏 1.45MB ZIP 举报
温馨提示
pyTorch中的ANFIS 这是使用pyTorch的ANFIS系统的实现。 航空情报服务 ANFIS是一种将模糊推理系统(FIS)呈现为一系列数字层的方式,因此可以像神经网络一样对其进行训练。 规范参考是的原始论文: Jang,J.-SR(1993)。 “ ANFIS:基于自适应网络的模糊推理系统”。 IEEE系统,人与控制论学报。 23(3):665–685。 doi:10.1109 / 21.256541 请注意,它采用的是高木Sugeno Kang(TSK)风格的去模糊功能,而不是通常的Mamdani风格。 背景:其他实现 可从获得Jang实施ANFIS系统的原始C代码以及测试用例。 大多数人似乎使用的版本是的。 即使您不使用Matlab,他们的也有助于理解ANFIS的工作原理。 阿根廷的Cristobal Fresno和Elmer A. Fernandez实现了R语言
资源推荐
资源详情
资源评论
收起资源包目录
anfis-pytorch-master.zip (31个子文件)
anfis-pytorch-master
jang-example4-data.trn 40KB
vignette_examples.py 10KB
membership.py 7KB
fileio
test_jfml_out.xml 24KB
test-model.txt 2KB
EvaluateXML.java 1KB
astext.py 4KB
test_tojfml.py 5KB
test_astext.py 518B
fcl.py 5KB
tojfml.py 7KB
test_fcl.py 455B
jang_inverse_example.py 5KB
cmeans.py 9KB
cluster_data
jain.txt 5KB
a3.txt 125KB
R15.txt 9KB
birch3.txt 2MB
Aggregation.txt 10KB
D31.txt 58KB
experimental.py 6KB
iris_example.py 5KB
sk_examples.py 5KB
LICENSE 1KB
README.md 3KB
Anfis-vignette.pdf 822KB
anfis.py 15KB
jang-example4-data.chk 40KB
.gitignore 1KB
jang_pendulum_example.py 9KB
jang_examples.py 11KB
共 31 条
- 1
资源评论
HomeTalk
- 粉丝: 28
- 资源: 4588
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功