# Albumentations
[![PyPI version](https://badge.fury.io/py/albumentations.svg)](https://badge.fury.io/py/albumentations)
![CI](https://github.com/albumentations-team/albumentations/workflows/CI/badge.svg)
Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to increase the quality of trained models. The purpose of image augmentation is to create new training samples from the existing data.
Here is an example of how you can apply some augmentations from Albumentations to create new images from the original one:
![parrot](https://habrastorage.org/webt/bd/ne/rv/bdnerv5ctkudmsaznhw4crsdfiw.jpeg)
## Why Albumentations
- Albumentations **[supports all common computer vision tasks](#i-want-to-use-albumentations-for-the-specific-task-such-as-classification-or-segmentation)** such as classification, semantic segmentation, instance segmentation, object detection, and pose estimation.
- The library provides **[a simple unified API](#a-simple-example)** to work with all data types: images (RBG-images, grayscale images, multispectral images), segmentation masks, bounding boxes, and keypoints.
- The library contains **[more than 70 different augmentations](#list-of-augmentations)** to generate new training samples from the existing data.
- Albumentations is [**fast**](#benchmarking-results). We benchmark each new release to ensure that augmentations provide maximum speed.
- It **[works with popular deep learning frameworks](#i-want-to-know-how-to-use-albumentations-with-deep-learning-frameworks)** such as PyTorch and TensorFlow. By the way, Albumentations is a part of the [PyTorch ecosystem](https://pytorch.org/ecosystem/).
- [**Written by experts**](#authors). The authors have experience both working on production computer vision systems and participating in competitive machine learning. Many core team members are Kaggle Masters and Grandmasters.
- The library is [**widely used**](#who-is-using-albumentations) in industry, deep learning research, machine learning competitions, and open source projects.
## Table of contents
- [Authors](#authors)
- [Installation](#installation)
- [Documentation](#documentation)
- [A simple example](#a-simple-example)
- [Getting started](#getting-started)
- [I am new to image augmentation](#i-am-new-to-image-augmentation)
- [I want to use Albumentations for the specific task such as classification or segmentation](#i-want-to-use-albumentations-for-the-specific-task-such-as-classification-or-segmentation)
- [I want to know how to use Albumentations with deep learning frameworks](#i-want-to-know-how-to-use-albumentations-with-deep-learning-frameworks)
- [I want to explore augmentations and see Albumentations in action](#i-want-to-explore-augmentations-and-see-albumentations-in-action)
- [Who is using Albumentations](#who-is-using-albumentations)
- [List of augmentations](#list-of-augmentations)
- [Pixel-level transforms](#pixel-level-transforms)
- [Spatial-level transforms](#spatial-level-transforms)
- [A few more examples of augmentations](#a-few-more-examples-of-augmentations)
- [Benchmarking results](#benchmarking-results)
- [Contributing](#contributing)
- [Comments](#comments)
- [Citing](#citing)
## Authors
[**Alexander Buslaev** — Computer Vision Engineer at Mapbox](https://www.linkedin.com/in/al-buslaev/) | [Kaggle Master](https://www.kaggle.com/albuslaev)
[**Alex Parinov** — Tech Lead at SberDevices](https://www.linkedin.com/in/alex-parinov/) | [Kaggle Master](https://www.kaggle.com/creafz)
[**Vladimir I. Iglovikov** — Staff Engineer at Lyft Level5](https://www.linkedin.com/in/iglovikov/) | [Kaggle Grandmaster](https://www.kaggle.com/iglovikov)
[**Evegene Khvedchenya** — Computer Vision Research Engineer at Piñata Farms](https://www.linkedin.com/in/cvtalks/) | [Kaggle Grandmaster](https://www.kaggle.com/bloodaxe)
[**Mikhail Druzhinin** — Computer Vision Engineer at ID R&D](https://www.linkedin.com/in/mikhail-druzhinin-548229100/) | [Kaggle Expert](https://www.kaggle.com/dipetm)
## Installation
Albumentations requires Python 3.6 or higher. To install the latest version from PyPI:
```
pip install -U albumentations
```
Other installation options are described in the [documentation](https://albumentations.ai/docs/getting_started/installation/).
## Documentation
The full documentation is available at **[https://albumentations.ai/docs/](https://albumentations.ai/docs/)**.
## A simple example
```python
import albumentations as A
import cv2
# Declare an augmentation pipeline
transform = A.Compose([
A.RandomCrop(width=256, height=256),
A.HorizontalFlip(p=0.5),
A.RandomBrightnessContrast(p=0.2),
])
# Read an image with OpenCV and convert it to the RGB colorspace
image = cv2.imread("image.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Augment an image
transformed = transform(image=image)
transformed_image = transformed["image"]
```
## Getting started
### I am new to image augmentation
Please start with the [introduction articles](https://albumentations.ai/docs/#introduction-to-image-augmentation) about why image augmentation is important and how it helps to build better models.
### I want to use Albumentations for the specific task such as classification or segmentation
If you want to use Albumentations for a specific task such as classification, segmentation, or object detection, refer to the [set of articles](https://albumentations.ai/docs/#getting-started-with-albumentations) that has an in-depth description of this task. We also have a [list of examples](https://albumentations.ai/docs/examples/) on applying Albumentations for different use cases.
### I want to know how to use Albumentations with deep learning frameworks
We have [examples of using Albumentations](https://albumentations.ai/docs/#examples-of-how-to-use-albumentations-with-different-deep-learning-frameworks) along with PyTorch and TensorFlow.
### I want to explore augmentations and see Albumentations in action
Check the [online demo of the library](https://albumentations-demo.herokuapp.com/). With it, you can apply augmentations to different images and see the result. Also, we have a [list of all available augmentations and their targets](#list-of-augmentations).
## Who is using Albumentations
<a href="https://www.lyft.com/" target="_blank"><img src="https://habrastorage.org/webt/ce/bs/sa/cebssajf_5asst5yshmyykqjhcg.png" width="100"/></a>
<a href="https://www.x5.ru/en" target="_blank"><img src="https://habrastorage.org/webt/9y/dv/f1/9ydvf1fbxotkl6nyhydrn9v8cqw.png" width="100"/></a>
<a href="https://imedhub.org/" target="_blank"><img src="https://habrastorage.org/webt/eq/8x/m-/eq8xm-fjfx_uqkka4_ekxsdwtiq.png" width="100"/></a>
<a href="https://recursionpharma.com" target="_blank"><img src="https://pbs.twimg.com/profile_images/925897897165639683/jI8YvBfC_400x400.jpg" width="100"/></a>
<a href="https://www.everypixel.com/" target="_blank"><img src="https://www.everypixel.com/i/logo_sq.png" width="100"/></a>
<a href="https://neuromation.io/" target="_blank"><img src="https://habrastorage.org/webt/yd/_4/xa/yd_4xauvggn1tuz5xgrtkif6lya.png" width="100"/></a>
#### See also:
- [A list of papers that cite Albumentations](https://albumentations.ai/whos_using#research).
- [A list of teams that were using Albumentations and took high places in machine learning competitions](https://albumentations.ai/whos_using#competitions).
- [Open source projects that use Albumentations](https://albumentations.ai/whos_using#open-source).
## List of augmentations
### Pixel-level transforms
Pixel-level transforms will change just an input image and will leave any additional targets such as masks, bounding boxes, and keypoints unchanged. The list of pixel-level transforms:
- [Blur](https://albumentations.ai/docs/api_reference/augmentations/transforms/#albumentations.augmentations.transforms.Blur)
- [CLAHE](https://albumentations.ai/docs/api_reference/augme
没有合适的资源?快使用搜索试试~ 我知道了~
Albumentations - 快速图像增强库和易于使用的包装其他库-python开发
共95个文件
py:46个
rst:13个
html:6个
需积分: 50 4 下载量 12 浏览量
2021-06-18
17:59:24
上传
评论
收藏 197KB ZIP 举报
温馨提示
基于高度优化的OpenCV库的快速扩充 超级简单但功能强大的界面,适用于不同的任务,如(分割,检测等) 易于定制 易于添加其他框架 相册 该库使用 HWC 格式的图像。 该库在大多数转换上都比其他库快。 基于 numpy、OpenCV,imgaug 从它们中挑选最好的。 简单、灵活的 API,允许在任何计算机视觉管道中使用该库。 大型、多样化的转换集。 易于扩展库以环绕其他库。 易于扩展到其他任务。 支持对图像、蒙版、关键点和边界框的转换。 支持 python 3.5-3.7 与 PyTorch 轻松集成。 从 Torchvision 轻松转移。 曾在 Kaggle、topcoder、CVPR、MICCAI 的许多 DL 比赛中获得最高成绩。 由 Kaggle 大师撰写。 目录 如何使用 Authors 安装 PyPI Conda 文档 像素级转换 空间级转换 从 torchvision 迁移到相册 基准测试结果 贡献 添加新转换 构建文档 评论 引用图书馆赢得的比赛 行业用户 如何使用 多合一展示笔记本- show.ipynb 分类 - example.
资源详情
资源评论
资源推荐
收起资源包目录
albu-albumentations.zip (95个子文件)
albumentations-master
MANIFEST.in 176B
.readthedocs.yml 190B
benchmark
Dockerfile 349B
benchmark.py 21KB
requirements.txt 145B
README.md 1008B
.deepsource.toml 187B
docs
augs_overview
index.rst 180B
writing_tests.rst 17KB
conf.py 5KB
make.bat 782B
_templates
search.html 2KB
footer.html 2KB
breadcrumbs.html 4KB
searchbox.html 365B
versions.html 1KB
layout.html 11KB
api
imgaug.rst 164B
core.rst 363B
pytorch.rst 167B
index.rst 93B
augmentations.rst 636B
citations.rst 11KB
requirements.txt 157B
hall_of_fame.rst 10KB
logo.png 4KB
examples.rst 2KB
Makefile 696B
index.rst 1KB
contributing.rst 758B
probabilities.rst 3KB
tools
make_transforms_docs.py 6KB
.github
ISSUE_TEMPLATE
documentation.md 239B
bug-report.md 705B
workflows
upload_to_pypi.yml 622B
ci.yml 3KB
tests
utils.py 2KB
conftest.py 2KB
test_transforms.py 31KB
test_keypoint.py 11KB
test_find_dual_start_end.py 1KB
test_pytorch.py 6KB
__init__.py 0B
test_augmentations.py 23KB
test_functional.py 37KB
test_bbox.py 10KB
files
transform_v0.4.6_with_totensor.json 8KB
transform_serialization_v2_with_totensor.json 6KB
transform_v0.4.6_without_totensor.json 8KB
output_v0.4.6_with_totensor.json 63KB
transform_serialization_v2_without_totensor.json 6KB
output_v0.4.6_without_totensor.json 65KB
test_imgaug_imports.py 2KB
test_core.py 12KB
test_imgaug.py 12KB
test_serialization.py 31KB
LICENSE 1KB
black.toml 524B
setup.cfg 258B
albumentations
core
composition.py 22KB
serialization.py 7KB
transforms_interface.py 9KB
utils.py 4KB
__init__.py 0B
six.py 2KB
augmentations
keypoints_utils.py 7KB
transforms.py 102KB
utils.py 258B
domain_adaptation.py 7KB
bbox_utils.py 15KB
__init__.py 444B
crops
transforms.py 31KB
__init__.py 52B
functional.py 9KB
functional.py 50KB
geometric
transforms.py 39KB
rotate.py 7KB
resize.py 6KB
__init__.py 96B
functional.py 25KB
pytorch
transforms.py 4KB
__init__.py 66B
functional.py 1KB
imgaug
transforms.py 14KB
__init__.py 0B
stubs.py 2KB
__init__.py 477B
setup.py 3KB
.gitignore 2KB
conda.recipe
conda_build_config.yaml 32B
meta.yaml 765B
build_upload.sh 833B
README.md 29KB
.gitattributes 61B
.pre-commit-config.yaml 544B
共 95 条
- 1
龙猫美术的世界
- 粉丝: 21
- 资源: 4722
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 11 -公司内部培训师报名表.docx
- 07-企业内部培训师选拔与培训方案.docx
- 09-内训师讲师手册.docx
- 08-企业内训师指导手册.docx
- 10-内部培训师薪酬制度.docx
- 13 -内部培训师推荐(自荐)表.docx
- 12 -内部合格培训师名单.docx
- 14 -内训师面试评分表(初试).docx
- 15 -培训师培训效果评估表.docx
- 某些iphone手机录音获取流stream延迟问题 以及 录音一次第二次不录音问题
- 防爆消防灭火侦察机器人sw16可编辑全套技术开发资料100%好用.zip
- 02-培训总结报告书.docx
- 01-培训总结.docx
- 03-培训总结表.docx
- 04-培训课程总结表.docx
- 06-培训总结与分析.xlsx.xls
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论0