没有合适的资源?快使用搜索试试~ 我知道了~
AdaboostOnMNIST:这是Adaboost算法的实现,它使用两个不同的弱学习器从头开始实施:决策树分类器和梯度提升分类...
共2个文件
md:1个
py:1个
需积分: 49 14 下载量 169 浏览量
2021-02-17
09:36:09
上传
评论 3
收藏 2KB ZIP 举报
温馨提示
AdaboostOnMNIST 这是使用两个不同的弱学习者从头开始实现Adaboost算法的方法:决策树分类器和梯度提升分类器。 Adaboost在MNIST上运行以告知奇数和偶数。 经过scikit Learn模型的adaboost测试,并获得了更高的分数。 最小的训练误差为%1.8,在7次迭代中进行了梯度增强。 函数调用为adaboost(X_train,Y_train,inversions_t,Classifier_type),有两种类型的分类器,“ Gradient_Boost”和“ Decision_tree”可以放入第4个输入中。 adaboost返回一个4元组(stump,stump_weights,errors,D_weights) 您可以使用predict(stumps,stump_weights,X_test)对训练集进行预测。 这将返回该X_test的标签数组
资源推荐
资源详情
资源评论
收起资源包目录
AdaboostOnMNIST-main.zip (2个子文件)
AdaboostOnMNIST-main
README.md 774B
Adaboost.py 5KB
共 2 条
- 1
资源评论
DeepIndaba
- 粉丝: 33
- 资源: 4654
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功