[![Contributors][contributors-shield]][contributors-url]
[![Forks][forks-shield]][forks-url]
[![Stargazers][stars-shield]][stars-url]
[![Issues][issues-shield]][issues-url]
[![MIT License][license-shield]][license-url]
<p>
<a href="https://github.com/emadboctorx/yolov3-keras-tf2/">
</a>
<h3 align="center">Yolo (all versions) Real Time Object Detector in tensorflow 2.4</h3>
.
<a href="https://github.com/emadboctorx/yolov3-keras-tf2/issues">Report Bug</a>
·
<a href="https://github.com/emadboctorx/yolov3-keras-tf2/issues">Request Feature</a>
</p>
<!-- TODO -->
## **TODO**
* [ ] Transfer learning
* [x] YoloV4 configuration
* [x] YoloV4 training
* [ ] YoloV4 loss function adjustments.
* [ ] Live plot losses
* [x] Command line options
* [x] YoloV3 tiny
* [ ] Rasberry Pi support
<!-- TABLE OF CONTENTS -->
## **Table of Contents**
* [Getting Started](#getting-started)
* [Installation](#installation)
* [Description](#description)
* [Updates](#updates)
* [Features](#features)
* [(new) Command line options](#new-command-line-options)
* [General](#general-options)
* [Training](#training-options)
* [Evaluation](#evaluation-options)
* [Detection](#detection-options)
* [DarkNet models loaded directly from .cfg files](#darknet-models-loaded-directly-from-cfg-files)
* [YoloV4 support](#yolov4-support)
* [tensorflow-2.4--keras-functional-api](#tensorflow-24--keras-functional-api)
* [cpu-gpu support](#cpu--gpu-support)
* [Random weights and DarkNet weights support](#random-weights-and-darknet-weights-support)
* [csv-xml annotation parsers.](#csv-xml-annotation-parsers)
* [Anchor generator.](#anchor-generation)
* [matplotlib visualization of all stages.](#matplotlib-visualization-of-all-stages)
* [tf.data input pipeline.](#tfdata-input-pipeline)
* [imgaug augmentation pipeline(customizable).](#imgaug-augmentation-pipelinecustomizable)
* [Logging](#logging)
* [All-in-1 custom trainer.](#all-in-1-custom-trainer-class)
* [Stop and resume training support.](#stop-and-resume-training)
* [Fully vectorized mAP evaluation.](#fully-vectorized-map-evaluation)
* [labelpix support.](#labelpix-support)
* [Photo & video detection](#photo--video-detection)
* [Usage](#usage)
* [Training](#training)
* [Terminal command](#training-command-line-equivalent)
* [Augmentation](#augmentation)
* [Evaluation](#evaluation)
* [Terminal command](#evaluation-command-line-equivalent)
* [Detection](#detection)
* [Terminal command (photos)](#detection-photo-command-line-equivalent)
* [Terminal command (video)](#detection-video-command-line-equivalent)
* [Contributing](#contributing)
* [Issues](#issue-policy)
* [What will be addressed](#relevant-issues)
* [What will not be adressed](#irrelevant-issues)
* [License](#license)
* [Show your support](#show-your-support)
* [Contact](#contact)
![GitHub Logo](/samples/detections.png)
<!-- GETTING STARTED -->
## **Getting started**
### **Installation**
1. **Clone the repo**
```sh
git clone https://github.com/emadboctorx/yolo-tf2
```
2. **Install**
**Note:** If you have a cuda-compatible GPU, uncomment `tensorflow-gpu` in `requirements.txt`
```sh
cd yolo-tf2
pip install .
```
3. **Verify installation**
```sh
yolotf2
```
**OUT:**
Yolo-tf2 1.5
Usage:
yolotf2 <command> [options] [args]
Available commands:
train Create new or use existing dataset and train a model
evaluate Evaluate a trained model
detect Detect a folder of images or a video
<!-- DESCRIPTION -->
## **Description**
yolo-tf2 was initially an implementation of [yolov3](https://pjreddie.com/darknet/yolo/)
(you only look once)(training & inference) and support for all yolo versions was added in V1.1
Yolo's original repo is [here](https://github.com/AlexeyAB/darknet) (written in C/C++/Cu).
Yolo is a state-of-the-art, real-time object detection system that is extremely
fast and accurate. There are many implementations that support tensorflow, only a few that
support tensorflow v2 and as I did not find versions that suit my needs so,
I decided to create this version which is very flexible and customizable.
It requires python 3.8+, is not platform specific and is MIT licensed.
<!-- Updates -->
## **Updates**
### [1.5] - 2021-01-21
- Fix bug that creates out of image bounding boxes after augmentation.
- Fix bug with display commands
- Update dependencies to most recent versions.
### [1.4] - 2020-11-30
- Fix a bug that draws extra irrelevant boxes over photos for V4 configuration
- Fix a bug that causes shape incompatibility issues
- Remove extra required parameters `image_width`, `image_height` which are currently
measured during runtime.
- Fix a bug that prevents output from saving due to path mishandling
- Unify all IO operations to go through `yolo_tf2.utils.common.get_abs_path()`
- All commands are currently supported from any working directory, so users shouldn't worry
about creating folders and matching names, which is handled automatically.
- Upgrade all dependencies to latest versions
### [1.3] - 2020-10-20
- Add command line full support for training, evaluation and detection
### [1.2] - 2020-10-18
- Add setup.py, direct installation through python3 setup.py install
- Restructure package folders
### [1.1] - 2020-06-02
- Add yolov4 support
### [1.0] - 2020-05-29
- Models are loaded directly from DarkNet .cfg files
- YoloV4 is currently supported(inference only, no training)
- Mish activation function(YoloV4)
<!-- FEATURES -->
## **Features**
## **(new) Command line options**
### **General options**
| flags | help | required | default |
|:---------------------|:------------------------------------------------------------------|:-----------|:--------------|
| --input-shape | Input shape ex: (416, 416, 3) | - | (416, 416, 3) |
| --classes | Path to classes .txt file | True | - |
| --model-cfg | Yolo DarkNet configuration .cfg file | True | - |
| --max-boxes | Maximum boxes per image | - | 100 |
| --iou-threshold | IOU(intersection over union threshold) | - | 0.5 |
| --score-threshold | Confidence score threshold | - | 0.5 |
| --workers | Concurrent tasks(in areas where that is possible) | - | 16 |
| --process-batch-size | Batch size of operations that needs batching (excluding training) | - | 32 |
### **Training options**
| flags | help | required | default |
|:----------------------|:-------------------------------------------------------------|:-----------|:----------|
| --weights | Path to trained weights .tf or .weights file | - | - |
| --epochs | Number of training epochs | - | 100 |
| --batch-size | Training batch size | - | 8 |
| --learning-rate | Training learning rate | - | 0.001 |
| --dataset-name | Name of the checkpoint | True | - |
| --test-size | test dataset relative size (a value between 0 and 1) | - | 0.1 |
| --evaluate | If True, evaluation will be conducted after training | - | - |
| --merge-evaluation | If False, evaluate training an
没有合适的资源?快使用搜索试试~ 我知道了~
yolo-tf2:keras和tensorflow 2.4中的yolo(所有版本)实现
共48个文件
py:20个
png:10个
gitkeep:8个
需积分: 50 18 下载量 54 浏览量
2021-02-04
23:30:53
上传
评论 2
收藏 5.67MB ZIP 举报
温馨提示
Yolo(所有版本)TensorFlow 2.4中的实时对象检测器 。 · 去做 转移学习 YoloV4配置 YoloV4培训 YoloV4损失功能调整。 现场积失 命令行选项 YoloV3微小 Rasberry Pi支持 目录 入门 安装 克隆仓库 git clone https://github.com/emadboctorx/yolo-tf2 安装 注意:如果您具有与cuda兼容的GPU,请在requirements.txt取消注释tensorflow-gpu cd yolo-tf2 pip install . 验证安装 yolotf2 出: Yolo-tf2
资源详情
资源评论
资源推荐
收起资源包目录
yolo-tf2-master.zip (48个子文件)
yolo-tf2-master
.github
ISSUE_TEMPLATE
bug_report.md 1KB
feature_request.md 814B
models
.gitkeep 0B
output
evaluation
.gitkeep 0B
detections
.gitkeep 0B
plots
.gitkeep 0B
data
.gitkeep 0B
requirements.txt 310B
LICENSE 1KB
samples
true_false.png 47KB
sample_image.png 1.03MB
anchors_sample.png 204KB
data.png 133KB
anchors.png 133KB
eval.png 184KB
detections.png 1.16MB
map.png 58KB
pr.png 31KB
aug1.png 2.74MB
setup.py 629B
README.md 30KB
data
xml_labels
.gitkeep 0B
tfrecords
.gitkeep 0B
photos
.gitkeep 0B
yolo_tf2
utils
dataset_handlers.py 9KB
cli_utils.py 8KB
anchors.py 3KB
annotation_parsers.py 7KB
__init__.py 0B
visual_tools.py 7KB
common.py 14KB
core
evaluator.py 19KB
augmentor.py 18KB
detector.py 9KB
__init__.py 74B
models.py 18KB
trainer.py 24KB
__init__.py 896B
config
yolo3.cfg 8KB
set_annotation_conf.py 2KB
voc_conf.json 531B
yolo4.cfg 12KB
__init__.py 80B
coco.txt 625B
cli_args.py 4KB
augmentation_options.py 41KB
cli.py 1KB
.gitignore 197B
共 48 条
- 1
得陇而望蜀者
- 粉丝: 39
- 资源: 4586
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- (源码)基于Spring Boot和Vue的后台管理系统.zip
- 用于将 Power BI 嵌入到您的应用中的 JavaScript 库 查看文档网站和 Wiki 了解更多信息 .zip
- (源码)基于Arduino、Python和Web技术的太阳能监控数据管理系统.zip
- (源码)基于Arduino的CAN总线传感器与执行器通信系统.zip
- (源码)基于C++的智能电力系统通信协议实现.zip
- 用于 Java 的 JSON-RPC.zip
- 用 JavaScript 重新实现计算机科学.zip
- (源码)基于PythonOpenCVYOLOv5DeepSort的猕猴桃自动计数系统.zip
- 用 JavaScript 编写的贪吃蛇游戏 .zip
- (源码)基于ASP.NET Core的美术课程管理系统.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论0