没有合适的资源?快使用搜索试试~ 我知道了~
researchableShap
共646个文件
py:237个
pyc:82个
ipynb:77个
需积分: 9 1 下载量 14 浏览量
2021-03-19
01:55:39
上传
评论
收藏 144.59MB ZIP 举报
温馨提示
SHAP(SHapley添加剂分解法)是一种博弈论方法,用于解释任何机器学习模型的输出。它使用博弈论中的经典Shapley值及其相关扩展将最佳信用分配与本地解释联系起来(详细信息和引文,请参见)。 安装 Shap可以从或 安装: pip install shap or conda install -c conda-forge shap TreeExplainer的树合奏示例(XGBoost / LightGBM / CatBoost / scikit-learn / pyspark模型) 尽管SHAP可以解释任何机器学习模型的输出,但我们已经开发了一种用于树状集成方法的高速精确算法(请参阅我们的)。 XGBoost , LightGBM , CatBoost , scikit-learn和pyspark树模型支持快速的C ++实现: import xgboost import sha
资源详情
资源评论
资源推荐
收起资源包目录
researchableShap (646个子文件)
logo.ai 248KB
shap_logo_scratch.ai 218KB
make.bat 8KB
shap_nips.bib 499B
nature_bme.bib 495B
tree_explainer.bib 464B
treeshap_arxiv.bib 372B
_cext.cc 25KB
_cext_gpu.cc 8KB
setup.cfg 31B
run_with_env.cmd 3KB
bootstrap.min.css 98KB
style.css 1KB
style.css 977B
NHANESI_X.csv 5.52MB
tweets.csv 3.26MB
NHANESI_subset_X.csv 1.27MB
loan_data.csv 734KB
NHANESI_y.csv 286KB
NHANESI_subset_y.csv 227KB
trial_data2_3_3_2019.csv 139KB
trial_data_3_3_2019.csv 57KB
trialdata.csv 8KB
eventdata.csv 461B
imagenet50_labels.csv 259B
questiondata.csv 0B
_cext_gpu.cu 14KB
adult.data 3.79MB
participants.db 32KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
glyphicons-halflings-regular.eot 20KB
shap_researchable-0.0.1.tar.gz 356KB
gpu_treeshap.h 60KB
tree_shap.h 57KB
tree_shap.h 57KB
League of Legends Win Prediction with XGBoost.html 4.18MB
Census income classification with XGBoost.html 3.96MB
Census income classification with LightGBM.html 3.67MB
decision_plot.html 2.59MB
dependence_plot.html 2.41MB
Census income classification with LightGBM.html 2.25MB
Census income classification with scikit-learn.html 2.18MB
Explain an Intermediate Layer of VGG16 on ImageNet.html 1.92MB
NHANES I Survival Model.html 1.62MB
Sentiment Analysis with Logistic Regression.html 1.25MB
Explain an Intermediate Layer of VGG16 on ImageNet (PyTorch).html 971KB
Iris classification with scikit-learn.html 699KB
Census income classification with Keras.html 668KB
Keras LSTM for IMDB Sentiment Classification.html 643KB
ImageNet VGG16 Model with Keras.html 553KB
Front Page DeepExplainer MNIST Example.html 414KB
PyTorch Deep Explainer MNIST example.html 355KB
ad.html 4KB
exp.html 3KB
consent.html 3KB
error.html 2KB
index.html 2KB
thanks-mturksubmit.html 2KB
default.html 1KB
thanks.html 836B
complete.html 814B
closepopup.html 469B
layout.html 145B
favicon.ico 4KB
favicon.ico 1KB
MANIFEST.in 23B
pytest.ini 77B
Image Captioning using Azure Cognitive Services.ipynb 7.22MB
League of Legends Win Prediction with XGBoost.ipynb 4MB
Census income classification with XGBoost.ipynb 3.83MB
Figures 8-11 NHANES I Survival Model-Copy1.ipynb 3.43MB
Abstractive Summarization Explanation Demo.ipynb 3.08MB
decision_plot.ipynb 2.28MB
Image Captioning using Open Source.ipynb 2.19MB
Figures 8-11 NHANES I Survival Model.ipynb 2.18MB
An introduction to explainable AI with Shapley values.ipynb 2.17MB
Census income classification with LightGBM.ipynb 2.09MB
Figure 4 - Supervised Clustering Adult Census Data.ipynb 1.93MB
Sentiment Analysis with Logistic Regression.ipynb 1.89MB
Explain an Intermediate Layer of VGG16 on ImageNet.ipynb 1.7MB
scatter.ipynb 1.65MB
Fitting a Linear Simulation with XGBoost.ipynb 1.62MB
NHANES I Survival Model.ipynb 1.36MB
Front page example (XGBoost).ipynb 1.28MB
Diabetes regression.ipynb 1.23MB
bar.ipynb 1.12MB
bar.ipynb 1.12MB
Machine Translation Explanation Demo.ipynb 1.12MB
Analyse Results.ipynb 1.07MB
Catboost tutorial.ipynb 1.02MB
Figure 7 - Airline Tweet Sentiment Analysis.ipynb 972KB
Emotion Data Multiclass Text Explanation Demo.ipynb 972KB
text.ipynb 960KB
Open Ended Text Generation Explanation Demo.ipynb 866KB
Explain an Intermediate Layer of VGG16 on ImageNet (PyTorch).ipynb 720KB
Language Modelling Explanation Demo.ipynb 712KB
beeswarm.ipynb 700KB
Image Multi Class.ipynb 674KB
共 646 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7
没名字的女人
- 粉丝: 34
- 资源: 4711
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论0