# Eigen Tensors {#eigen_tensors}
Tensors are multidimensional arrays of elements. Elements are typically scalars,
but more complex types such as strings are also supported.
[TOC]
## Tensor Classes
You can manipulate a tensor with one of the following classes. They all are in
the namespace `::Eigen.`
### Class Tensor<data_type, rank>
This is the class to use to create a tensor and allocate memory for it. The
class is templatized with the tensor datatype, such as float or int, and the
tensor rank. The rank is the number of dimensions, for example rank 2 is a
matrix.
Tensors of this class are resizable. For example, if you assign a tensor of a
different size to a Tensor, that tensor is resized to match its new value.
#### Constructor `Tensor<data_type, rank>(size0, size1, ...)`
Constructor for a Tensor. The constructor must be passed `rank` integers
indicating the sizes of the instance along each of the the `rank`
dimensions.
// Create a tensor of rank 3 of sizes 2, 3, 4. This tensor owns
// memory to hold 24 floating point values (24 = 2 x 3 x 4).
Tensor<float, 3> t_3d(2, 3, 4);
// Resize t_3d by assigning a tensor of different sizes, but same rank.
t_3d = Tensor<float, 3>(3, 4, 3);
#### Constructor `Tensor<data_type, rank>(size_array)`
Constructor where the sizes for the constructor are specified as an array of
values instead of an explicitly list of parameters. The array type to use is
`Eigen::array<Eigen::Index>`. The array can be constructed automatically
from an initializer list.
// Create a tensor of strings of rank 2 with sizes 5, 7.
Tensor<string, 2> t_2d({5, 7});
### Class `TensorFixedSize<data_type, Sizes<size0, size1, ...>>`
Class to use for tensors of fixed size, where the size is known at compile
time. Fixed sized tensors can provide very fast computations because all their
dimensions are known by the compiler. FixedSize tensors are not resizable.
If the total number of elements in a fixed size tensor is small enough the
tensor data is held onto the stack and does not cause heap allocation and free.
// Create a 4 x 3 tensor of floats.
TensorFixedSize<float, Sizes<4, 3>> t_4x3;
### Class `TensorMap<Tensor<data_type, rank>>`
This is the class to use to create a tensor on top of memory allocated and
owned by another part of your code. It allows to view any piece of allocated
memory as a Tensor. Instances of this class do not own the memory where the
data are stored.
A TensorMap is not resizable because it does not own the memory where its data
are stored.
#### Constructor `TensorMap<Tensor<data_type, rank>>(data, size0, size1, ...)`
Constructor for a Tensor. The constructor must be passed a pointer to the
storage for the data, and "rank" size attributes. The storage has to be
large enough to hold all the data.
// Map a tensor of ints on top of stack-allocated storage.
int storage[128]; // 2 x 4 x 2 x 8 = 128
TensorMap<Tensor<int, 4>> t_4d(storage, 2, 4, 2, 8);
// The same storage can be viewed as a different tensor.
// You can also pass the sizes as an array.
TensorMap<Tensor<int, 2>> t_2d(storage, 16, 8);
// You can also map fixed-size tensors. Here we get a 1d view of
// the 2d fixed-size tensor.
TensorFixedSize<float, Sizes<4, 3>> t_4x3;
TensorMap<Tensor<float, 1>> t_12(t_4x3.data(), 12);
#### Class `TensorRef`
See Assigning to a TensorRef below.
## Accessing Tensor Elements
#### `<data_type> tensor(index0, index1...)`
Return the element at position `(index0, index1...)` in tensor
`tensor`. You must pass as many parameters as the rank of `tensor`.
The expression can be used as an l-value to set the value of the element at the
specified position. The value returned is of the datatype of the tensor.
// Set the value of the element at position (0, 1, 0);
Tensor<float, 3> t_3d(2, 3, 4);
t_3d(0, 1, 0) = 12.0f;
// Initialize all elements to random values.
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 4; ++k) {
t_3d(i, j, k) = ...some random value...;
}
}
}
// Print elements of a tensor.
for (int i = 0; i < 2; ++i) {
LOG(INFO) << t_3d(i, 0, 0);
}
## TensorLayout
The tensor library supports 2 layouts: `ColMajor` (the default) and
`RowMajor`. Only the default column major layout is currently fully
supported, and it is therefore not recommended to attempt to use the row major
layout at the moment.
The layout of a tensor is optionally specified as part of its type. If not
specified explicitly column major is assumed.
Tensor<float, 3, ColMajor> col_major; // equivalent to Tensor<float, 3>
TensorMap<Tensor<float, 3, RowMajor> > row_major(data, ...);
All the arguments to an expression must use the same layout. Attempting to mix
different layouts will result in a compilation error.
It is possible to change the layout of a tensor or an expression using the
`swap_layout()` method. Note that this will also reverse the order of the
dimensions.
Tensor<float, 2, ColMajor> col_major(2, 4);
Tensor<float, 2, RowMajor> row_major(2, 4);
Tensor<float, 2> col_major_result = col_major; // ok, layouts match
Tensor<float, 2> col_major_result = row_major; // will not compile
// Simple layout swap
col_major_result = row_major.swap_layout();
eigen_assert(col_major_result.dimension(0) == 4);
eigen_assert(col_major_result.dimension(1) == 2);
// Swap the layout and preserve the order of the dimensions
array<int, 2> shuffle(1, 0);
col_major_result = row_major.swap_layout().shuffle(shuffle);
eigen_assert(col_major_result.dimension(0) == 2);
eigen_assert(col_major_result.dimension(1) == 4);
## Tensor Operations
The Eigen Tensor library provides a vast library of operations on Tensors:
numerical operations such as addition and multiplication, geometry operations
such as slicing and shuffling, etc. These operations are available as methods
of the Tensor classes, and in some cases as operator overloads. For example
the following code computes the elementwise addition of two tensors:
Tensor<float, 3> t1(2, 3, 4);
...set some values in t1...
Tensor<float, 3> t2(2, 3, 4);
...set some values in t2...
// Set t3 to the element wise sum of t1 and t2
Tensor<float, 3> t3 = t1 + t2;
While the code above looks easy enough, it is important to understand that the
expression `t1 + t2` is not actually adding the values of the tensors. The
expression instead constructs a "tensor operator" object of the class
TensorCwiseBinaryOp<scalar_sum>, which has references to the tensors
`t1` and `t2`. This is a small C++ object that knows how to add
`t1` and `t2`. It is only when the value of the expression is assigned
to the tensor `t3` that the addition is actually performed. Technically,
this happens through the overloading of `operator=()` in the Tensor class.
This mechanism for computing tensor expressions allows for lazy evaluation and
optimizations which are what make the tensor library very fast.
Of course, the tensor operators do nest, and the expression `t1 + t2 * 0.3f`
is actually represented with the (approximate) tree of operators:
TensorCwiseBinaryOp<scalar_sum>(t1, TensorCwiseUnaryOp<scalar_mul>(t2, 0.3f))
### Tensor Operations and C++ "auto"
Because Tensor operations create tensor operators, the C++ `auto` keyword
does not have its intuitive meaning. Consider these 2 lines of code:
Tensor<float, 3> t3 = t1 + t2;
auto t4 = t1 + t2;
In the first line we allocate the tensor `t3` and it will contain the
result of the addition of `t1` and `t2`. In the second line, `t4`
is actually the tree of tensor operators that will compute the addition of
`t1` and `t2`. In fact, `t4` is *not* a tensor and you cannot get
the values of its elements:
Tensor<float, 3> t3 = t1 + t2;
cout << t3(0, 0, 0); // OK prints the value of t1(
没有合适的资源?快使用搜索试试~ 我知道了~
树莓派zero交叉编译tensorflow-lite所需依赖,工具链及编译好的库文件
共2000个文件
h:2418个
cpp:830个
cc:531个
需积分: 0 19 下载量 151 浏览量
2021-03-21
00:46:46
上传
评论 1
收藏 122.64MB ZIP 举报
温馨提示
树莓派zero交叉编译tensorflow-lite所需依赖,工具链及编译好的库文件(tensorflow2.4.1) 使用说明参考博客: https://blog.csdn.net/weixin_41973774/article/details/114807080
资源推荐
资源详情
资源评论
收起资源包目录
树莓派zero交叉编译tensorflow-lite所需依赖,工具链及编译好的库文件 (2000个子文件)
fftsg.c 87KB
fftsg3d.c 57KB
fft4f2d.c 55KB
fftsg2d.c 37KB
ztbmv.c 19KB
ctbmv.c 19KB
shrtdct.c 18KB
zhbmv.c 15KB
chbmv.c 15KB
zhpmv.c 13KB
chpmv.c 13KB
dtbmv.c 11KB
stbmv.c 11KB
ssbmv.c 10KB
dsbmv.c 10KB
dspmv.c 8KB
sspmv.c 8KB
drotmg.c 6KB
srotmg.c 6KB
drotm.c 5KB
srotm.c 5KB
fftsg3dt.c 3KB
lsame.c 3KB
fft4f2dt.c 3KB
fftsg2dt.c 3KB
alloc.c 3KB
complexdots.c 2KB
example.c 2KB
shrtdctt.c 2KB
d_cnjg.c 117B
r_cnjg.c 105B
test.cpp 138KB
idl_parser.cpp 131KB
idl_gen_cpp.cpp 116KB
idl_gen_csharp.cpp 80KB
idl_gen_rust.cpp 67KB
idl_gen_python.cpp 63KB
NonLinearOptimization.cpp 63KB
cxx11_tensor_image_patch_sycl.cpp 61KB
cxx11_tensor_symmetry.cpp 58KB
idl_gen_kotlin.cpp 55KB
levenberg_marquardt.cpp 54KB
idl_gen_js_ts.cpp 53KB
idl_gen_go.cpp 50KB
idl_gen_java.cpp 49KB
cxx11_tensor_contract_sycl.cpp 46KB
cxx11_tensor_reduction_sycl.cpp 41KB
cxx11_tensor_image_patch.cpp 35KB
idl_gen_php.cpp 33KB
idl_gen_dart.cpp 33KB
idl_gen_swift.cpp 32KB
packetmath.cpp 32KB
cxx11_tensor_executor.cpp 30KB
cxx11_tensor_block_eval.cpp 29KB
reflection.cpp 28KB
analyze-blocking-sizes.cpp 28KB
sparse_basic.cpp 28KB
flatc.cpp 26KB
idl_gen_lua.cpp 26KB
cxx11_tensor_chipping_sycl.cpp 26KB
sparse_product.cpp 25KB
cxx11_tensor_thread_pool.cpp 25KB
geo_transformations.cpp 25KB
cxx11_tensor_contraction.cpp 22KB
cxx11_tensor_block_access.cpp 22KB
array_cwise.cpp 22KB
benchmark-blocking-sizes.cpp 22KB
special_functions.cpp 21KB
evaluators.cpp 21KB
vectorization_logic.cpp 20KB
cxx11_tensor_convolution_sycl.cpp 20KB
quaternion_demo.cpp 19KB
cxx11_meta.cpp 18KB
indexed_view.cpp 18KB
cxx11_tensor_index_list.cpp 18KB
cholesky.cpp 18KB
mixingtypes.cpp 17KB
cxx11_tensor_morphing_sycl.cpp 17KB
stl_iterators.cpp 17KB
bessel_functions.cpp 16KB
cxx11_tensor_morphing.cpp 16KB
cxx11_tensor_builtins_sycl.cpp 15KB
cxx11_tensor_block_io.cpp 15KB
idl_gen_text.cpp 15KB
cxx11_tensor_reduction.cpp 15KB
idl_gen_lobster.cpp 15KB
idl_gen_grpc.cpp 15KB
cxx11_tensor_sycl.cpp 14KB
block.cpp 14KB
product_extra.cpp 14KB
qr_colpivoting.cpp 14KB
message_builder_test.cpp 13KB
sparse_setter.cpp 13KB
cxx11_tensor_fft.cpp 13KB
cxx11_tensor_chipping.cpp 13KB
array_for_matrix.cpp 13KB
nullary.cpp 13KB
initializer_list_construction.cpp 12KB
code_generators.cpp 12KB
sparse_block.cpp 12KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
__XWH1999__
- 粉丝: 118
- 资源: 3
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功