{
"problem": "Two identical rectangular crates are packed with cylindrical pipes, using different methods. Each pipe has diameter 10 cm. A side view of the first four rows of each of the two different methods of packing is shown below.\n\n[asy]\ndraw(circle((1,1),1),black+linewidth(1));\ndraw(circle((3,1),1),black+linewidth(1));\ndraw(circle((5,1),1),black+linewidth(1));\ndraw(circle((7,1),1),black+linewidth(1));\ndraw(circle((9,1),1),black+linewidth(1));\ndraw(circle((11,1),1),black+linewidth(1));\ndraw(circle((13,1),1),black+linewidth(1));\ndraw(circle((15,1),1),black+linewidth(1));\ndraw(circle((17,1),1),black+linewidth(1));\ndraw(circle((19,1),1),black+linewidth(1));\ndraw(circle((1,3),1),black+linewidth(1));\ndraw(circle((3,3),1),black+linewidth(1));\ndraw(circle((5,3),1),black+linewidth(1));\ndraw(circle((7,3),1),black+linewidth(1));\ndraw(circle((9,3),1),black+linewidth(1));\ndraw(circle((11,3),1),black+linewidth(1));\ndraw(circle((13,3),1),black+linewidth(1));\ndraw(circle((15,3),1),black+linewidth(1));\ndraw(circle((17,3),1),black+linewidth(1));\ndraw(circle((19,3),1),black+linewidth(1));\ndraw(circle((1,5),1),black+linewidth(1));\ndraw(circle((3,5),1),black+linewidth(1));\ndraw(circle((5,5),1),black+linewidth(1));\ndraw(circle((7,5),1),black+linewidth(1));\ndraw(circle((9,5),1),black+linewidth(1));\ndraw(circle((11,5),1),black+linewidth(1));\ndraw(circle((13,5),1),black+linewidth(1));\ndraw(circle((15,5),1),black+linewidth(1));\ndraw(circle((17,5),1),black+linewidth(1));\ndraw(circle((19,5),1),black+linewidth(1));\ndraw(circle((1,7),1),black+linewidth(1));\ndraw(circle((3,7),1),black+linewidth(1));\ndraw(circle((5,7),1),black+linewidth(1));\ndraw(circle((7,7),1),black+linewidth(1));\ndraw(circle((9,7),1),black+linewidth(1));\ndraw(circle((11,7),1),black+linewidth(1));\ndraw(circle((13,7),1),black+linewidth(1));\ndraw(circle((15,7),1),black+linewidth(1));\ndraw(circle((17,7),1),black+linewidth(1));\ndraw(circle((19,7),1),black+linewidth(1));\ndraw((0,15)--(0,0)--(20,0)--(20,15),black+linewidth(1));\ndot((10,9));\ndot((10,11));\ndot((10,13));\nlabel(\"Crate A\",(10,0),S);\n[/asy]\n\n[asy]\ndraw(circle((1,1),1),black+linewidth(1));\ndraw(circle((3,1),1),black+linewidth(1));\ndraw(circle((5,1),1),black+linewidth(1));\ndraw(circle((7,1),1),black+linewidth(1));\ndraw(circle((9,1),1),black+linewidth(1));\ndraw(circle((11,1),1),black+linewidth(1));\ndraw(circle((13,1),1),black+linewidth(1));\ndraw(circle((15,1),1),black+linewidth(1));\ndraw(circle((17,1),1),black+linewidth(1));\ndraw(circle((19,1),1),black+linewidth(1));\ndraw(circle((2,2.75),1),black+linewidth(1));\ndraw(circle((4,2.75),1),black+linewidth(1));\ndraw(circle((6,2.75),1),black+linewidth(1));\ndraw(circle((8,2.75),1),black+linewidth(1));\ndraw(circle((10,2.75),1),black+linewidth(1));\ndraw(circle((12,2.75),1),black+linewidth(1));\ndraw(circle((14,2.75),1),black+linewidth(1));\ndraw(circle((16,2.75),1),black+linewidth(1));\ndraw(circle((18,2.75),1),black+linewidth(1));\ndraw(circle((1,4.5),1),black+linewidth(1));\ndraw(circle((3,4.5),1),black+linewidth(1));\ndraw(circle((5,4.5),1),black+linewidth(1));\ndraw(circle((7,4.5),1),black+linewidth(1));\ndraw(circle((9,4.5),1),black+linewidth(1));\ndraw(circle((11,4.5),1),black+linewidth(1));\ndraw(circle((13,4.5),1),black+linewidth(1));\ndraw(circle((15,4.5),1),black+linewidth(1));\ndraw(circle((17,4.5),1),black+linewidth(1));\ndraw(circle((19,4.5),1),black+linewidth(1));\ndraw(circle((2,6.25),1),black+linewidth(1));\ndraw(circle((4,6.25),1),black+linewidth(1));\ndraw(circle((6,6.25),1),black+linewidth(1));\ndraw(circle((8,6.25),1),black+linewidth(1));\ndraw(circle((10,6.25),1),black+linewidth(1));\ndraw(circle((12,6.25),1),black+linewidth(1));\ndraw(circle((14,6.25),1),black+linewidth(1));\ndraw(circle((16,6.25),1),black+linewidth(1));\ndraw(circle((18,6.25),1),black+linewidth(1));\ndraw((0,15)--(0,0)--(20,0)--(20,15),black+linewidth(1));\ndot((10,9));\ndot((10,11));\ndot((10,13));\nlabel(\"Crate B\",(10,0),S);\n[/asy]\n\nAfter the crates have been packed with 200 pipes each, what is the positive difference in the total heights (in cm) of the two packings?",
"level": "Level 5",
"type": "Geometry",
"solution": "In Crate A, we have 20 rows of 10 pipes packed directly on top of each other. So the height of the packing is 20 times the diameter of a single pipe, or 200 cm. In Crate B, draw a horizontal line through the centers of the 9 or 10 pipes in each row. By symmetry, the distance between each consecutive pair of these 21 lines will be the same, say equal to $d$. There will be 20 such distances.\n\n[asy]\nunitsize(0.25cm);\ndraw(circle((1,1),1),black+linewidth(1));\ndraw(circle((3,1),1),black+linewidth(1));\ndraw(circle((5,1),1),black+linewidth(1));\ndraw(circle((7,1),1),black+linewidth(1));\ndraw(circle((9,1),1),black+linewidth(1));\ndraw(circle((11,1),1),black+linewidth(1));\ndraw(circle((13,1),1),black+linewidth(1));\ndraw(circle((15,1),1),black+linewidth(1));\ndraw(circle((17,1),1),black+linewidth(1));\ndraw(circle((19,1),1),black+linewidth(1));\ndraw(circle((2,2.75),1),black+linewidth(1));\ndraw(circle((4,2.75),1),black+linewidth(1));\ndraw(circle((6,2.75),1),black+linewidth(1));\ndraw(circle((8,2.75),1),black+linewidth(1));\ndraw(circle((10,2.75),1),black+linewidth(1));\ndraw(circle((12,2.75),1),black+linewidth(1));\ndraw(circle((14,2.75),1),black+linewidth(1));\ndraw(circle((16,2.75),1),black+linewidth(1));\ndraw(circle((18,2.75),1),black+linewidth(1));\ndraw(circle((1,4.5),1),black+linewidth(1));\ndraw(circle((3,4.5),1),black+linewidth(1));\ndraw(circle((5,4.5),1),black+linewidth(1));\ndraw(circle((7,4.5),1),black+linewidth(1));\ndraw(circle((9,4.5),1),black+linewidth(1));\ndraw(circle((11,4.5),1),black+linewidth(1));\ndraw(circle((13,4.5),1),black+linewidth(1));\ndraw(circle((15,4.5),1),black+linewidth(1));\ndraw(circle((17,4.5),1),black+linewidth(1));\ndraw(circle((19,4.5),1),black+linewidth(1));\ndraw(circle((2,6.25),1),black+linewidth(1));\ndraw(circle((4,6.25),1),black+linewidth(1));\ndraw(circle((6,6.25),1),black+linewidth(1));\ndraw(circle((8,6.25),1),black+linewidth(1));\ndraw(circle((10,6.25),1),black+linewidth(1));\ndraw(circle((12,6.25),1),black+linewidth(1));\ndraw(circle((14,6.25),1),black+linewidth(1));\ndraw(circle((16,6.25),1),black+linewidth(1));\ndraw(circle((18,6.25),1),black+linewidth(1));\ndraw((0,15)--(0,0)--(20,0)--(20,15),black+linewidth(1));\ndot((10,9));\ndot((10,11));\ndot((10,13));\ndraw((-4,1)--(24,1),black+linewidth(1));\ndraw((-4,2.75)--(24,2.75),black+linewidth(1));\ndraw((-4,4.5)--(24,4.5),black+linewidth(1));\ndraw((-4,6.25)--(24,6.25),black+linewidth(1));\nlabel(\"$d$\",(25,3),S);\nlabel(\"$d$\",(25,4.75),S);\nlabel(\"$d$\",(25,6.5),S);\n[/asy]\n\nThe distance of the bottom line from the bottom of the crate is equal to the radius of a pipe, and the distance of the top line from the top of the top row is also equal to the radius of a pipe. Thus, the total height of the packing in Crate B is equal to $(10+20d)$ cm.\n\nNext, we find $d$. If we extract three pairwise touching pipes from two consecutive rows, their centers form an equilateral triangle with side length equal to the diameter of each pipe, so $d$ is equal to the height of this equilateral triangle, i.e. $d=5\\sqrt{3}$ cm. Therefore, the total height of this packing is $(10+100\\sqrt{3})$ cm, which is approximately 183.2 cm.\n\nTherefore, the difference in the total heights of the two packings is $$200-(10+100\\sqrt{3})=\\boxed{190-100\\sqrt{3}}$$cm, or about 16.8 cm, with the packing in Crate A being the higher one."
}
没有合适的资源?快使用搜索试试~ 我知道了~
机器学习(大模型):数学问题解决能力测量工具的数据集
共2000个文件
json:1999个
txt:1个
需积分: 5 0 下载量 80 浏览量
2024-11-10
21:57:53
上传
评论
收藏 7.07MB ZIP 举报
温馨提示
数据集是一个由 Dan Hendrycks 等人开发的旨在测量数学问题解决能力的开源项目,在机器学习和人工智能领域具有重要价值。它包含大量数学问题,涵盖学校水平难度的多种题型,专注于测试模型的数学学习和代数推理能力。 该数据集的核心功能十分突出。一方面,提供了数据集加载器,使用户能够方便快捷地访问和使用其中的数学问题。另一方面,具备评估代码,有助于用户评估模型在解决数学问题上的表现。研究人员利用 MATH 数据集,可以加载特定的数学问题类型,如算术、代数、微积分等,并深入分析这些问题。 数据集的结构清晰,由问题和答案对组成。答案以文本形式呈现,问题则通过自然语言描述。这种结构为开发和测试能够理解和解决复杂数学问题的 AI 模型提供了丰富资源。例如,研究人员可以利用该数据集训练模型,使其更好地理解数学问题的含义,并准确地给出答案。同时,通过对不同模型在该数据集上的表现进行评估,可以不断改进模型的性能。 总的来说,MATH 数据集为评估和提升 AI 在数学问题解决方面的能力提供了一个宝贵的资源。它不仅有助于推动人工智能在数学领域的研究,还为跨学科合作提供了机会,将数学与计算机科学紧密结合。
资源推荐
资源详情
资源评论
收起资源包目录
机器学习(大模型):数学问题解决能力测量工具的数据集 (2000个子文件)
580.json 7KB
140.json 6KB
1007.json 6KB
308.json 6KB
676.json 5KB
721.json 5KB
6108.json 4KB
6121.json 4KB
726.json 4KB
91.json 4KB
6030.json 4KB
479.json 4KB
6144.json 4KB
6120.json 4KB
917.json 3KB
611.json 3KB
6042.json 3KB
988.json 3KB
192.json 3KB
709.json 3KB
5077.json 3KB
6084.json 3KB
1079.json 3KB
666.json 3KB
113.json 3KB
6064.json 3KB
6177.json 3KB
6156.json 3KB
741.json 3KB
6049.json 3KB
6140.json 3KB
6172.json 3KB
6146.json 3KB
6122.json 3KB
541.json 3KB
1073.json 3KB
5088.json 3KB
1104.json 3KB
6128.json 3KB
5114.json 3KB
6002.json 3KB
591.json 3KB
6056.json 3KB
173.json 3KB
397.json 3KB
6151.json 3KB
5106.json 3KB
205.json 3KB
1048.json 3KB
533.json 3KB
463.json 3KB
5043.json 3KB
688.json 3KB
6138.json 3KB
120.json 3KB
51.json 3KB
324.json 3KB
6116.json 3KB
833.json 3KB
718.json 3KB
892.json 3KB
6046.json 3KB
886.json 3KB
1024.json 3KB
53.json 3KB
6101.json 3KB
811.json 3KB
894.json 2KB
5056.json 2KB
6017.json 2KB
6113.json 2KB
1025.json 2KB
6125.json 2KB
44.json 2KB
1102.json 2KB
874.json 2KB
604.json 2KB
5098.json 2KB
497.json 2KB
926.json 2KB
6103.json 2KB
6129.json 2KB
832.json 2KB
870.json 2KB
62.json 2KB
240.json 2KB
6067.json 2KB
6083.json 2KB
498.json 2KB
6152.json 2KB
5003.json 2KB
7052.json 2KB
6097.json 2KB
5052.json 2KB
376.json 2KB
773.json 2KB
948.json 2KB
86.json 2KB
5012.json 2KB
6189.json 2KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
庄小焱
- 粉丝: 3169
- 资源: 134
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- Matlab_Matlab界面Graphviz图形布局包允许交互式编辑生成的图形.zip
- Matlab_Matlab例程处理空间数据,特别是与MMS和ClusterCAA数据.zip
- Matlab_Matlab粒子滤波和平滑示例代码.zip
- H.265/HEVC解码器优化:针对Intel平台的技术探讨与性能提升
- Matlab_Matlab软件处理动作捕捉文件.zip
- Matlab_Matlab三维数字图像相关工具箱.zip
- Matlab_Matlab实现的Adam随机梯度下降优化算法.zip
- Matlab_Matlab实现siftopensift算法.zip
- Matlab_Matlab实现的非刚性迭代最近点.zip
- Matlab_Matlab散射网络.zip
- Matlab_Matlab实现的多视图低秩稀疏子空间聚类.zip
- Matlab_Matlab实现的高斯过程等机器学习工具.zip
- Matlab_Matlab实现的粒子群优化,有很好的实例说明.zip
- Matlab_Matlab图形用户界面计算和可视化旋转stewart平台的逆运动学.zip
- Matlab_Matlab实现的一种三维重建算法.zip
- Matlab_Matlab小提琴绘图.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功