# CheXNet for Classification and Localization of Thoracic Diseases
This is a Python3 (Pytorch) reimplementation of [CheXNet](https://stanfordmlgroup.github.io/projects/chexnet/). The model takes a chest X-ray image as input and outputs the probability of each thoracic disease along with a likelihood map of pathologies.
<div align=center><img width="500" height="500" src="./localization/00008473_011-3.png"/></div>
## Dataset
The [ChestX-ray14 dataset](http://openaccess.thecvf.com/content_cvpr_2017/papers/Wang_ChestX-ray8_Hospital-Scale_Chest_CVPR_2017_paper.pdf) comprises 112,120 frontal-view chest X-ray images of 30,805 unique patients with 14 disease labels. To evaluate the model, we randomly split the dataset into training (70%), validation (10%) and test (20%) sets, following the work in paper. Partitioned image names and corresponding labels are placed under the directory [labels](./ChestX-ray14/labels).
## Prerequisites
- Python 3.4+
- [PyTorch](http://pytorch.org/) and its dependencies
## Usage
1. Clone this repository.
2. Download images of ChestX-ray14 from this [released page](https://nihcc.app.box.com/v/ChestXray-NIHCC) and decompress them to the directory [images](./ChestX-ray14/images).
3. Specify one or multiple GPUs and run
`python model.py`
## Comparsion
We followed the training strategy described in the official paper, and a ten crop method is adopted both in validation and test. Compared with the original CheXNet, the per-class AUROC of our reproduced model is almost the same. We have also proposed a slightly-improved model which achieves a mean AUROC of 0.847 (v.s. 0.841 of the original CheXNet).
| Pathology | [Wang et al.](https://arxiv.org/abs/1705.02315) | [Yao et al.](https://arxiv.org/abs/1710.10501) | [CheXNet](https://arxiv.org/abs/1711.05225) | Our Implemented CheXNet | Our Improved Model |
| :----------------: | :--------------------------------------: | :--------------------------------------: | :--------------------------------------: | :---------------------: | :----------------: |
| Atelectasis | 0.716 | 0.772 | 0.8094 | 0.8294 | 0.8311 |
| Cardiomegaly | 0.807 | 0.904 | 0.9248 | 0.9165 | 0.9220 |
| Effusion | 0.784 | 0.859 | 0.8638 | 0.8870 | 0.8891 |
| Infiltration | 0.609 | 0.695 | 0.7345 | 0.7143 | 0.7146 |
| Mass | 0.706 | 0.792 | 0.8676 | 0.8597 | 0.8627 |
| Nodule | 0.671 | 0.717 | 0.7802 | 0.7873 | 0.7883 |
| Pneumonia | 0.633 | 0.713 | 0.7680 | 0.7745 | 0.7820 |
| Pneumothorax | 0.806 | 0.841 | 0.8887 | 0.8726 | 0.8844 |
| Consolidation | 0.708 | 0.788 | 0.7901 | 0.8142 | 0.8148 |
| Edema | 0.835 | 0.882 | 0.8878 | 0.8932 | 0.8992 |
| Emphysema | 0.815 | 0.829 | 0.9371 | 0.9254 | 0.9343 |
| Fibrosis | 0.769 | 0.767 | 0.8047 | 0.8304 | 0.8385 |
| Pleural Thickening | 0.708 | 0.765 | 0.8062 | 0.7831 | 0.7914 |
| Hernia | 0.767 | 0.914 | 0.9164 | 0.9104 | 0.9206 |
## Contributions
This work was collaboratively conducted by Xinyu Weng, Nan Zhuang, Jingjing Tian and Yingcheng Liu.
## Our Team
All of us are students/interns of Machine Intelligence Lab, Institute of Computer Science & Technology, Peking University, directed by Prof. Yadong Mu (http://www.muyadong.com).
没有合适的资源?快使用搜索试试~ 我知道了~
Python-CheXNet的Python3Pytorch重新实现
共12个文件
txt:3个
png:2个
py:2个
需积分: 50 16 下载量 89 浏览量
2019-08-11
05:43:59
上传
评论 2
收藏 78.39MB ZIP 举报
温馨提示
CheXNet用于胸部疾病的分类和定位
资源推荐
资源详情
资源评论
收起资源包目录
Python-CheXNet的Python3Pytorch重新实现.zip (12个子文件)
CheXNet-master
read_data.py 1KB
.gitattributes 66B
localization
00008473_009-3.png 958KB
00008473_011-3.png 1.1MB
00030605_000.jpg 170KB
model.pth.tar 80.27MB
model.py 4KB
ChestX-ray14
labels
test_list.txt 986KB
train_list.txt 3.37MB
val_list.txt 493KB
images
.keep 0B
README.md 5KB
共 12 条
- 1
资源评论
weixin_39840914
- 粉丝: 436
- 资源: 1万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功