第 14 卷 第 4 期 北华大学学报(自然科学版) Vol. 14 No. 4
2013 年 8 月 JOURNAL OF BEIHUA UNIVERSITY(Natural Science) Aug. 2013
文章编号:1009-4822(2013)04-0373-06 DOI:10. 11713 / j. issn. 1009-4822. 2013. 04. 001
一类具有治愈率和非线性发生率的
HIV 感染模型的动力学特性
王海彬,徐 瑞,陈 辉
(军械工程学院应用数学研究所,河北 石家庄 050003)
摘要:研究了一类具有治愈率和非线性发生率的 HIV 感染模型的动力学性质,给出了决定病毒消亡与否的基本
再生数的数学表达式,利用特征方程和 Hurwitz 判据分析了模型平衡点的局部稳定性. 通过构造 Lyapunov 函数,
证明了当基本再生数 < 1 时无病平衡点是全局渐近稳定性的,利用第二加性复合矩阵理论,证明了当基本再生
数 > 1 时感染平衡点是全局渐近稳定的.
关键词:HIV 模型;治愈率;非线性发生率;全局渐近稳定性
中图分类号:O175. 13 文献标志码:A
收稿日期:2013-03-12
基金项目:国家自然科学基金项目(11071254) .
作者简介:王海彬(1989 - ),男,博士研究生,主要从事病毒动力学研究.
Dynamics of HIV Infection Model with Cure Rate
and Nonlinear Incidence Rate
WANG Hai-bin,XU Rui,CHEN Hui
(Institute of Applied Mathematics,Ordnance Engineering College,Shijiazhuang 050003,China)
Abstract: The dynamics of HIV infection model with cure rate and nonlinear incidence rate is investigated. The
explicit expression for the basic reproduction number of the model which determines whether the virus dies out or
not is obtained. With characteristic equation and Hurwitz criterion, the local stability of the equilibria is
analyzed. By constructing a proper Lyapunov function,the global stability of the infection-free equilibrium is
derived when the basic reproduction number is less than unity. Using the second additive compound matrix
theory,we prove that the endemic equilibrium is globally asymptotically stable when the basic reproduction
number is greater than unity.
Key words: HIV model;cure rate;nonlinear incidence rate;global asymptotic stability
1 引 言
文献[1]研究了描述 HIV 感染过程的基本数学模型:
x = λ - dx - βxv,
y = βxv - ay,
v = ky - uv,
ì
î
í
ï
ï
ï
ï
(1)