传感技术中的应用传感技术中的应用GaN技术克服无线基础设施容量挑战技术克服无线基础设施容量挑战
近年来,全球智能手机快速普及,LTE网络已被陆续商用,受此影响,全球移动数据的使用继续飙升。据GSA
移动行业分类数据显示,截至2015年3月,全球LTE用户数量比上一年猛增151%,达到6.35亿。这一增长势头
将持续下去,到2020年,LTE用户数将达25亿。 移动网络运营商面临着诸多挑战,一方面要快速扩容以支
持增量用户,另一方面则要尽量减少网络中断并降低成本。长期而言,5G网络有望大幅提升容量和数据速率。
但是,5G技术规格仍然处于定义阶段,至少5年内不可能部署。另外,5G可能涉及网络架构的大幅改变。
为了在5G到来之前满足大幅提高容量的迫切需求,运营商已经开始尽力扩大4G网络的容量而不重
传感技术中的应用传感技术中的应用GaN技术克服无线基础设施容量挑战技术克服无线基础设施容量挑战
类别:传感技术 发布于:2015/12/10 | 320 次阅读
近年来,全球智能手机快速普及,LTE网络已被陆续商用,受此影响,全球移动数据的使用继续飙升。据GSA移动行业分
类数据显示,截至2015年3月,全球LTE用户数量比上一年猛增151%,达到6.35亿。这一增长势头将持续下去,到2020
年,LTE用户数将达25亿。
移动网络运营商面临着诸多挑战,一方面要快速扩容以支持增量用户,另一方面则要尽量减少网络中断并降低成本。长期
而言,5G网络有望大幅提升容量和数据速率。但是,5G技术规格仍然处于定义阶段,至少5年内不可能部署。另外,5G可能
涉及网络架构的大幅改变。
为了在5G到来之前满足大幅提高容量的迫切需求,运营商已经开始尽力扩大4G网络的容量而不重新设计基础设施架构。
他们关注的焦点是那些能使他们从现有LTE频谱分配中获取更多容量的技术,以减小购买高昂的额外频谱的必要性。
运营商目前瞄准了多种关键容量和性能升级技术。短期计划以载波聚合(CA)为中心,这是LTEAdvanced标准的一个特
性。中期增强技术包括被称为4.5G、4G+或pre-5G的多种增强技术,其中包括高阶(最多64X)多用户多输入多输出(MU-MIMO)
技术、更高阶调制以及免执照5GHz频谱的使用等。
这些短期和中期扩容技术以及最终的5G网络将要求采用能提供更高功率输出和功效且支持宽带运行和高频频段的基站功
率放大器 (PA)。
GaN on SiC的前景的前景
历史上来看,基站功率放大器主要采用基于硅的横向扩散金属氧化物半导体(LDMOS)技术。然而,越来越苛刻的要求逐
渐暴露出LDMOS的局限性,并导致众多供应商在高功率基站功率放大器技术方面转向了氮化镓(GaN)。例如,功率输出要求
每年都在提高;对基站功率放大器的要求从一年前的 30W-40W增至今年的60W,而新一代基站的要求可能达100W或以上。
当前和规划的扩容需求也需要能支持更高频率的宽带功率放大器。LDMOS即使在较低射频频率下也存在带宽限制,LDMOS
功率放大器的带宽会随着频率的增加而大幅减少。虽然LDMOS仅在不超过约3.5GHz的频率范围内有效,但 GaN功率放大器
已经能处理50GHz或以上的毫米波频率。另外,GaN功率放大器支持更高的带宽,即使在较高的频率也是如此。
如今存在的两种主要GaN技术为碳化硅GaN(SiC)和硅GaN(Si)。GaN on Si的优势在于基板成本低,可以在硅代工厂生
产,拥有相应的规模经济优势。但GaN on SiC支持高得多的功率密度,支持更高的功率输出。这是因为SiC具有更优秀的导热
率:大约比Si高三倍。GaN on SiC功率密度约为5W/mm,约7倍于LDMOS的功率密度。因此,GaN on SiC功率放大器能以
相同的尺寸提供大约两倍的功率输出。结果,GaN on SiC已经成为高功率射频应用的首选技术。
GaN on SiC功率放大器的优势直接关系到运营商关注的三大问题,即所谓的三C问题:容量、覆盖范围和成本。就如我
将在本文中描述的那样,较高的输出功率可以大幅提升容量,同时还能维持蜂窝覆盖范围。GaN on SiC功率放大器具有更高
的功效,可以减少运营商的巨额电费,减轻散热问题。为了更加详细地探讨这些优势,我将讨论 GaN on SiC在无线网络演进
的各个阶段可能发挥的作用,先从载波聚合开始,然后是4.5G,最后为5G。
近期:载波聚合近期:载波聚合
运营商目前处于载波聚合(CA)技术部署初期,这是LTE Advanced标准(3GPP Release 10)的一个特性。借助CA,运营商
可以提高数据容量和吞吐量,其方式是把最多五个分量载波(每个载波在 1.4-20MHz之间)组合成最高达100MHz的总带宽。
CA的一个关键吸引力在于,该技术可以把来自多个频段的分量载波组合起来(带间(CA),从而让运营商更好地利用碎片
化的频谱分配方案。许多运营商拥有的连续频谱不到20MHz,因此需要CA来为更快的数据服务需求提供支持。初期部署一般
只将CA用于下行链路通信,并把两个10MHz的分量载波组合成20MHz的总带宽。
CA一般要求采用宽带功率放大器,以避免各分量载波采用独立功率放大器所带来的额外成本和复杂性问题。常见的CA组
合(如频段1(1800MHz)与频段3(2100MHz)组合)要求采用带宽大于300MHz的功率放大器。即使在较高频率下,GaN功率放大
器也能比LDMOS支持更高的带宽,这是一个关键优势。由于GaN拥有更高的功效,并且GaN功率放大器可以支持需要多个窄
带LDMOS功率放大器才能实现的带宽,这两个因素抵消了LDMOS的单位芯片成本优势。CA还要求更高的功率输出,以实现
在多个分量载波上的并行传输。GaN on SiC功率放大器可以满足如今对多频段功率放大器的典型要求,其功率输出达60W或
以上,支持300MHz以上的带宽。
功效对运行成本的影响功效对运行成本的影响
评论0
最新资源