没有合适的资源?快使用搜索试试~ 我知道了~
现实世界的数据常常是不完全的、有噪声的、不一致的。数据清洗过程包括遗漏数据处理,噪声数据处理,以及不一致数据处理。本节介绍数据清洗的主要处理方法。 遗漏数据处理 假设在分析一个商场销售数据时,发现有多个记录中的属性值为空,如顾客的收入属性,则对于为空的属性值,可以采用以下方法进行遗漏数据处理。 1)忽略该条记录 若一条记录中有属性值被遗漏了,则将此条记录排除,尤其是没有类别属性值而又要进行分类数据挖掘时。 当然,这种方法并不很有效,尤其是在每个属性的遗漏值的记录比例相差较大时。 2)手工填补遗漏值 一般这种方法比较耗时,而且对于存在许多遗漏情况的大规模数据集而言,显然可行性较差。 3)利用默
资源推荐
资源评论
资源评论
weixin_38728464
- 粉丝: 1
- 资源: 966
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功