高压水力割缝技术是利用高压水射流对煤层或岩石进行切割的一种新技术。在矿井工作面回采过程中,为了治理和预防冲击性来压(也称为冲击地压或岩爆),这项技术被采用来降低邻空巷道的应力集中程度。冲击性来压是由煤层中应力集中所引起的,是煤矿中常见的一种危险现象,它可以导致严重的矿井灾害。
在同煤集团忻州窑矿的工作面回采过程中,巷道邻空侧的煤柱应力集中导致了冲击性来压的发生。为了防止这种情况,研究人员和工程技术人员采用高压水力割缝技术,这是一种非爆破的解压方式,通过在煤层中切割缝隙,减轻局部应力,从而达到减缓或控制冲击性来压的目的。
高压水力割缝技术的应用具有以下几个方面的优势:
1. 安全性提高:传统的爆破方法可能会引起煤层的二次震动,加大了冲击性来压的风险。而高压水力割缝技术作为一种非爆破手段,对矿山整体安全性的提升有显著作用。
2. 环保:高压水力切割不会产生爆破时的有害气体和大量粉尘,减少了对作业环境的污染。
3. 高效性:高压水射流切割速度快,能迅速在煤层中形成所需要的缝隙,有助于及时释放煤层中的应力。
4. 适应性好:可以对不同地质条件下的煤层进行切割,适应性较强。
为了实施高压水力割缝技术,需要特定的设备和参数设置。例如,文档中提到的“KFS60-25G”型号的高压水力割缝机,具有特定的技术参数如功率、工作压力、流量和切割能力等,这些参数对于确保割缝技术的有效实施至关重要。
应用高压水力割缝技术不仅需要对技术本身有深入的理解,还需要对工作面回采的地质条件、应力分布、煤层特性等进行综合考虑。例如,矿井工作面的布置、煤层的厚度、岩性组合等都可能影响到高压水力割缝技术的应用效果。
此外,高压水力割缝技术的应用还需要考虑设备操作的安全性和维护。对于操作人员来说,需要进行专业培训,确保他们能够熟练地操作设备并遵循安全操作规程。对于设备的维护,则需要制定定期检查和维护计划,确保设备在使用过程中的性能稳定。
在高压水力割缝技术的应用过程中,还需要对技术实施效果进行监测和评估。通过监测巷道的应力变化、监测煤层中的应力释放情况以及评估割缝作业对工作面回采安全性的影响,可以对技术的实施效果进行有效的评价。
综合上述,高压水力割缝技术在防治冲击性来压中的应用是一个涉及地质学、工程学、安全学和设备学等多个学科领域的综合性技术。在煤矿工作面回采过程中,这项技术不仅可以提高安全性,减少灾害事故,还可以提高煤炭资源的回收效率,具有重要的应用价值和经济意义。