没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
指纹图像预处理是自动指纹识别系统(AFIS)的关键步骤,它的好坏直接影响到整个系统的速度和准确率.详细介绍了预处理过程中指纹图像与背景分离、方向信息提取、纹线提取、二值化、细化,以及细节特征提取等关键技术.在这些模块中,提出了一些改进算法和新的思想.根据人指纹本身是一个曲面结构的特点,采用一种自适应的局部阈值分离方法,解决处于不同深浅区域的指纹图像均能有效地同背景分离;提出了一种改进的、基于非彻底细化图像的细节特征提取算法,在不对纹线进行任何处理的情况下,直接从细化指纹图像上提取原始细节特征点集合,并针对
资源推荐
资源详情
资源评论
第
42
卷第
4
期
2006
年
7
月
南京大学学报(自然科学)
JOURNAL
OF
NANJING
UNIVERSITY
CNA
TURAL
SCIENCES)
自动指纹识别系统预处理技术
及细节特征提取算法的研究祷
杨小冬,宁新宝气尹义龙
(南京大学电子科学与工程系,生物医学电子工程研究所,南京,
210093)
Vo
l.
42 ,
No.4
J
uly
,
2006
摘
要:
指纹图像预处理是自动指纹识别系统
CAFIS)
的关键步骤,它的好坏直接影响到整个系统的
速度和准确率.详细介绍了预处理过程中指纹图像与背景分离、方向信息提取、纹线提取、二值化、细
化,以及细节特征提取等关键技术.在这些模块中,提出了一些改进算法和新的思想.根据人指纹本身是
一个曲面结构的特点,采用一种自适应的局部阂值分离方法,解决处于不同深浅区域的指纹图像均能有
效地同背景分离;提出了一种改进的、基于非彻底细化图像的细节特征提取算法,在不对纹线进行任何
处理的情况下,直接从细化指纹图像上提取原始细节特征点集合,并针对各种噪声产生的伪特征点进行
修复;另外,还介绍了一种基于灰度纹线跟踪直接提取指纹图像细节特征的新方法,并与传统算法进行
了比较.这种方法不经过二值化、细化等过程,能显著减少预处理带来的累计误差,加快处理速度,在一
定程度上提高了准确率.实验证明,以上算法行之有效,在实际应用和严格测验中取得了较好的效果.
关键词:
指纹预处理,细节特征提取,纹线跟踪
中图分类号
TP
391
Fingerprint
Image Preprocessing Technique
and
Feature Extraction Algorithm
Yσ
ng
Xiao-Dong
,
Ning
Xin-B
α
0
,
Yin
Yi-Long
CDepartment of Electronic Science and Engineering,
Institute
of Biomedical Electronic Engineering,
Nanjing
University
, Nanjing, 210093 ,
China)
Abstract:
The
biologic identification technology
that
is delegated by
fingerprint
has
widely developed in recent
years.
It
is recognized to
bring
a revolution in identification area.
The
study
of
fingerprint
has
high academic vague
as well
as
social benefit,
and
is becoming
one
of
the
research
hotspots
in
many
countries.
Of
the
whole
Automatic
Fingerprint
Identification
System
C
AFIS)
,
fingerprint
image preprocessing is
the
core
and
key
step.
The
input
fingerprint image
should
be
preprocessed
first
before feature
extraction
and
matching
can be done afterwards.
These
processes
can
influence
the
speed
and
accuracy of
the
entire
syste
m.
In
this
paper
,
we
made
a deep
research
on
these
preprocessing
techniques,
which
included
the
separation
of
foreground
and
background
regions,
the
orientation
information
extraction
, ridge
extraction
, image enhancement,
binarization, image
thinning
, as well as feature extraction.
In
these
process
modules
,
we
brought
forward
some
new
algorithms
and
novel
thoughts.
Therefore
,
the
AFIS
was
complemented and perfected in several aspects. According
to
the
characteristic
structure
that
the
fingerprint
itself is a curving plane,
we
introduced
a
separating
method
using
self-adaptive local
threshold
, which could solve
the
problems
that
fingerprint images in
areas
of
different
depth
could
养基金项目:南京大学重大应用研究预研项目
(2001-03)
收稿日期
:2005-12-15
柑通讯联系人.
E-mail: xbning@nju.edu.cn
•
352
•
南京大学学报(自然科学)
第
42
卷
all be separated from background effectively.
We
also presented
an
improved non-thorough thinning-imag
e-
based
feature extraction method.
In
the
premise of
not
dealing with
the
ridge
anywhere
,
we
extracted
the
feature
points'
set
of
the
original fingerprints directly from
the
thinned
im
且
ges.
Then
,
we
repaired
these
feature points
by
deleting
those
fake minutiae
brought
by
some
sorts
of yawp.
This
algorithm
greatly
increased
the
feature extraction speed.
The
accurate
rate
was
achieved
to
above eighty seven percen
t.
But
when
the
fingerprint images
were
of very poor
quality
,
the
inherent
flaw of this algorithm would delete some
true
minutiae.
In
addition,
we
also introduced a novel
feature extraction
method
, which
was
based
on
the
following fingerprint ridgelines.
The
minutiae
were
directly
extracted from
the
original
gray
scale fingerprints
that
had not been
preprocessed
, such
as
binarization and thinning
etc.
Co
mpared
with
traditional methods, this one could markedly reduce
the
accumulated
errors
produced by
preprocessing processes.
So,
the
speed was increased and
the
accurate
rate
was
e
吐
lanced
to some degree too.
In
the
end
of
this paper,
we
tested
the
performance of
this
AFIS
under NJU-2000 database.
The
testing
items included
seven aspects
such
as
Average Enroll
Time
, Average
Match
Time
,
False
Rejection
Rate
, and
False
Acceptance
Rate
, etc.
Using
the
FRR
as
the
function
of
FAR
,
we
drew
the
Receiver
Operating
Curve
the
n.
The
experiment
results
showed
that
this
system
could achieve
better
results
and performance indexes.
The
preprocessing time
by
using
these
improved methods mentioned above
was
less
than
that
of
the
traditional algorithms.
After
testing
many
fingerprint images of different qualities,
we
arrive
at
the
conclusions
that
the
FRR
is less
than
two
percent,
the
FAR
is less
than
zero point zero one percent, and
the
identification time is
not
more
than
two
seconds.
These
performance
indexes all reach
an
advanced leve
l.
Key words: fingerprint image preprocessing, feature extraction, ridge following
与传统的帐号+密码、
IC
卡等身份识别于
段相比,自动指纹识别技术
(AFIT)
具有不会丢
失、不会遗忘、唯-性、不变性、防伪性能好和使
用方便等优点,正逐步在管理、门禁、金融、公安
和网络等领域得到广泛应用.以指纹为代表的
生物识别技术的广泛发展和应用已被公认将会
给身份识别领域带来一场革命,并已成为各国
学术界和工业界所研究的热点之一
[IJ
指纹图像预处理和细节特征提取是整个自
动指纹识别系统的内容和核心部分,它的好坏
指纹图像预处理
指纹
直接影响整个系统的速度和准确率
[2J
本文详
细介绍了预处理过程和细节特征提取的各个关
键步骤,提出了一些新的思路和改进算法,从多
个方面对自动指纹识别系统进行了补充和完
善,对于提高整个自动指纹识别系统的性能具
有重要意义.实践证明,这些算法行之有效,在
实际应用中取得了良好的效果.
1
预处理过程概述
指纹预处理过程如图
1
所示.
dFJ
品
图
1
指纹图像预处理
Fig. l
卫
le
fingerprint image
prep
n:比
essing
从图
1
可看出,指纹预处理过程一般由指
纹图像与背景分离、方向信息提取、纹线提取、
二值化(或称二值图像分割)、图像细化及纹线
修复五个模块组成.输人的灰度指纹图像,首先
进行指纹图像与背景分离和方向信息提取,然
后利用方向信息进行指纹纹线提取,再对图像
进行二值化得到二值图像,并加以细化和纹线
修复、提取细节特征信息或直接提取细节特征
剩余10页未读,继续阅读
资源评论
weixin_38682279
- 粉丝: 9
- 资源: 889
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功