没有合适的资源?快使用搜索试试~ 我知道了~
Sub-nanosecond silicon-on-insulator optical micro-ring switch wi...
0 下载量 21 浏览量
2021-02-09
21:29:49
上传
评论
收藏 1.37MB PDF 举报
温馨提示
We demonstrate a sub-nanosecond electro-optical switch with low crosstalk in a silicon-on-insulator (SOI) dual-coupled micro-ring embedded with p-i-n diodes. A crosstalk of -23 dB is obtained in the 20 \mu m-radius micro-ring with the well-designing asymmetric dual-coupling structure. By optimizations of the doping profiles and the fabrication processes, the sub-nanosecond switch-on/off time of <400 ps is finally realized under an electrical pre-emphasized driving signal. This compact and fast-r
资源推荐
资源详情
资源评论
August 10, 2010 / Vol. 8, No. 8 / CHINESE OPTICS LETTERS 757
Sub-nanosecond silicon-on-insulator optical micro-ring
switch with low crosstalk
Xi Xiao ( FFF)
∗
, Haihua Xu (MMM°°°uuu), Liang Zhou (±±± ), Zhiyong Li (ooo]]]),
Yuntao Li (ooo$$$777), Yude Yu (|||), and Jinzhong Yu ({{{777¥¥¥)
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors,
Chinese Academy of Sciences, Beijing 100083, China
∗
E-mail: xixiao@semi.ac.cn
Received March 3, 2010
We demonstrate a sub-nanosecond electro-optical switch with low crosstalk in a silicon-on-insulator (SOI)
dual-coupled micro-ring embedded with p-i-n diodes. A crosstalk of –23 dB is obtained in the 20-µm-radius
micro-ring with the well-designing asymmetric dual-coupling structure. By optimizations of the doping
profiles and the fabrication processes, the sub-nanosecond switch-on/off time of < 400 ps is finally realized
under an electrical pre-emphasized driving signal. This compact and fast-response micro-ring switch, which
can be fabricated by complementary metal oxide semiconductor (CMOS) compatible technologies, have
enormous p otential in optical interconnects of multicore networks-on-chip.
OCIS co des: 130.3120, 250.6715, 230.5750, 230.4000.
doi: 10.3788/COL20100808.0757.
The rapid development of silicon photonics, including
modulators, switches, and Ge-on-Si photodetectors, has
indicated the feasibility of on-chip optical intercon-
nects in multicore computing systems. Significant in-
crements of computation performance can be exp ected if
high-data-rate optical signals can be switched with low
power. A silicon-based micro-resonator has been consid-
ered as the key component for the optical networks-on-
chip for its compactness, wavelength selectivity, and low
power consumption
[1−4]
. Some studies on silicon micro-
resonator-based optical switches have been reported,
aiming at on-chip multiplexing/demultiplexing and rout-
ing of wavelength division multiplexing signals with low
power and large bandwidth
[5−9]
. However, most of the
reported crosstalks and switch times are not sufficient
for future fast on-chip optical switching with transmis-
sion bit rates exceeding 10 Gb/s. A compact and low
crosstalk silicon-based electro-optical switch operating in
the sub-nanosecond regime remains to be demonstrated
for on-chip optical interconnects.
In this letter, we demonstrate a 1×2 silicon-on-
insulator (SOI) based micro-ring switch with low
crosstalk and sub-nanosecond switch time. The switch
crosstalk of –23 dB is obtained with the optimized asym-
metric dual-coupling micro-ring. Through the lateral
p-i-n diodes integrated to the ring waveguide, carrier-
induced plasma dispersion effect
[10]
is utilized to fast-
switch the resonance of the micro-ring. An electrical
pre-emphasized driving signal is generated and employed
for switch speed acceleration. A sub-nanosecond switch-
on/off time of 300/380 ps is realized.
The switch consists of a 20-µm-radius dual-coupling
micro-ring surrounded by p+ and n+ doped regions.
Figure 1(a) is the top-view microscope image of the fabri-
cated switch with Al electrodes. The gray lines highlight
the 20-µm-radius micro-ring and the coupling waveg-
uides. Under forward bias, the embedded p-i-n diodes
inject the carriers into the intrinsic waveguide. The vari-
ation of the carrier density changes the refractive index
and absorption coefficient because of the plasma disper-
sion effect in silicon
[10]
. In this way, the driving electrical
signal shifts the micro-ring resonance and controls the
on/off state of the optical signals produced from the
through- and drop-ports.
Figure 1(b) shows the cross-sectional schematic of the
micro-ring waveguide and the integrated lateral p-i-n
diodes. The waveguide was fabricated on a SOI wafer
with a 340-nm top silicon layer. All the waveguides have
∼100 nm slab thickness for the electrical integration and
are single mode rib waveguides designed for transverse
electric (TE) mode transmission. The operation speed
of a forward p-i-n diode is significantly dependent on
the carrier transport distance across the waveguide
[11,12]
;
Fig. 1. (a) Top-view microscope image of the micro-ring
switch; (b) cross-section schematic of the fabricated ring
waveguide integrated with forward p-i-n diodes.
1671-7694/2010/080757-04
c
° 2010 Chinese Optics Letters
资源评论
weixin_38682161
- 粉丝: 3
- 资源: 972
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 三相共直流母线式光储VSG 同步机 构网型 组网型逆变器 仿真包含前级光伏PV与Boost的扰动观察法最大功率追踪,共直流母线式储能Buck-boost变器,采用电压电流双闭环控制 三相VSG 同步
- 光伏MPPT同步发电机(VSG)并网仿真模型 结构:前级光伏板采用扰动观察法最大功率跟踪给定值,然后将该功率通过直流母线电容电压进行功率解耦并经过逆变器输送给右侧的负载和电网 控制:光伏Boost采用
- 电动车之王特斯拉二手车选购指南
- 光伏储能同步发电机VSG并网仿真模型C 光伏阵列搭建的光伏电池模型 光伏:采用扰动观察法最大功率点MPPT跟踪控制 储能:蓄电池充放电控制,双向Buck Boost变器,采用直流母线电压外环控制稳定直
- 改进滑膜控制与传统控制的永磁同步电机PMSM仿真模型 学习资料: ①与仿真完全对应的29页Word文档详细说明和4页设计说明 ②(PI、最优滑膜、改进滑膜)三种控制仿真模型 ③录制好的导出波形
- 在MATLAB中发现集群并使用集群配置文件.pdf
- 精品二手车检测方法实战
- 风储惯量调频仿真模型,风电调频,一次调频,四机两区系统,采用频域模型法使得风电渗透率25%,附加惯性控制,储能附加下垂控制,参与系统一次调频,系统频率特性优 有SOC特性 特点,风储联合仿真速度很快
- python+Django+MySQL实现学生管理系统
- 基于PI+重复控制的有源电力滤波器谐波抑制策略 ①APF有源电力滤波器 ②无功补偿 ③PI+重复控制(电流环重复控制) ④THD小于1%,谐波抑制 附带搭建仿真过程参考的文献(最后一张图) 2018b
- https://test-mp-v4.csdn.net/mp-blog/creation/editor
- PowerBI-svg 目标达成率
- 三相四桥臂逆变器MATLAB Simulink仿真模型,接不平衡负载时的调制算法 接非线性负载时的多PR控制器并联算法 提供仿真模型、设计报告及参考文献
- 高斯变迹光栅滤波器模型建立,fdtd模型+参考文献
- Golang之敏感词过滤器的设计与实现
- 基于微信原生开发的微信商城项目
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功