基于基于AD7879的的“两点触摸两点触摸”手势识别系统的实现手势识别系统的实现
本文提出了一个创新的“两点触摸”概念,它利用阻性触摸屏控制器AD7879在廉价的阻性触摸屏上检测最常见的
双指手势(缩放、捏合和旋转)。
引言
在许多消费电子应用中,电容式触控技术与目前市场占有率最高的传统电阻式触控技术相比,为使用者带来了多项优点,包括:更佳的视觉享受──提供高达97%
的穿透率与更真实的色彩呈现;更轻松灵活的操控性──触控功能的实现只需轻触即可,甚至於可不必实际与面板接触;更长的使用寿命──电容式面板的寿命约为两
亿次,为四线电阻式(一百万次)的两百倍,五线电阻式(四千万次)的五倍。目前,低成本阻性技术的应用市场包括:只需要单点触控、至关重要的极其精确的空间
分辨率、利用触控笔来实现特定功能(如亚洲语言符号识别等),或者用户必须戴手套的场合。以小尺寸为主流的消费性市场在触控技术的选择上仅有电阻式与投射电
容式两种,前者虽然成本低廉,但是不佳的光学表现与耐受性长期受到市场诟病;後者虽有多项优点,但真正能量产的供应商屈指可数,售价自然相当昂贵,以致仅见
於少数高单价产品上。
虽然阻性技术传统上是用来检测屏幕上“单点触摸”的位置,但本文提出了一个创新的“
1 阻性触摸屏的经典方法
典型的阻性触摸屏包括两个平行的氧化铟锡(ITO)导电层,中间的间隙将两层分开(图1)。上层(Y)的边缘电极相对于下层(X)的边缘电极旋转90°。当对屏
幕的一个小区域施加压力,使这两层发生电气接触时,就发生了“触摸”现象。如果在上层的两个电极之间施加一个直流电压,而下层悬空,则触摸将使下层获得与触摸
点相同的电压。判断上层方向触摸坐标的方法是测量下层的电压,以便确定触摸点处的电阻占总电阻的比值。然后交换两层的电气连接,获得触摸点在另一个轴上的坐
标。
连接直流电压的层称为“有源”层,电流与其阻抗成反比。测量电压的层称为“无源”层,无相关电流流经该层。发生单点触摸时,在有源层中形成一个分压器,无源层
电压测量通过一个模数转换器读取与触摸点和负电极之间的距离成比例的电压。
由于成本低廉,传统的4线阻性触摸屏深受单点触控应用的欢迎。实现阻性多点触控的技术有多种,其中总是会用到一个矩阵布局屏幕,但屏幕制造成本高得吓
人。此外,控制器需要许多输入和输出来测量和驱动各个屏幕带,导致控制器成本和测量时间增加。
图1.(a)阻性触摸屏的结构;(b)用户触摸屏幕时的电气接触
2 超越单点触控
虽然如此,但通过理解并模拟该过程背后的物理原理,我们可以从阻性触摸屏提取更多信息。当发生两点触摸时,无源屏幕中的一段电阻加上触点的电阻与有源屏
幕的导电段并联,因此电源的负载阻抗减小,电流增大。阻性控制器的经典方法是假设有源层中的电流恒定不变,无源层为等电位。两点触摸时,这些假设不再成立,
为了提取所需的信息,需要进行更多测量。
阻性屏幕中的两点触摸检测模型如图2所示。Rtouch为层间的接触电阻;在现有的大多数屏幕中,其数量级一般与两层的电阻相同。如果有一个恒定的电流I流经有
源层的两端,则有源层上的电压为: