没有合适的资源?快使用搜索试试~ 我知道了~
New classes of sequence families with low correlation by using m...
0 下载量 134 浏览量
2021-02-21
02:44:41
上传
评论
收藏 88KB PDF 举报
温馨提示
For an odd prime p, a new sequence family of period pm – 1, size (M – 1)pmr is proposed using multiplicative and additive characters. The upper bound for the maximum magnitude of nontrivial correlations of the sequence family is derived using well-known character sums. The upper bound is shown to be (r+1)\sqrt (p^m)+3, which meets the Welch bound asymptotically
资源推荐
资源详情
资源评论
RESEARCH ARTICLE
Pinhui KE, Shengyuan ZHANG
New classes of sequence families with low correlation by
using multiplicative and additive characters
© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012
Abstract For an odd prime p, a new sequence family of
period p
m
– 1, size ðM – 1Þp
mr
is proposed using multi-
plicative and additive characters. The upper bound for the
maximum magnitude of nontrivial correlations of the
sequence family is derived using well-known character
sums. The upper bound is shown to be ðr þ1Þ
ffiffiffiffiffiffi
p
m
p
þ 3,
which meets the Welch bound asymptotically.
Keywords finite field, character sum, correlation, poly-
phase sequence, Welch bound
1 Introduction
In wireless communications, sequences with low correla-
tion are widely used to distinguish multiple users or
channels with low mutual-access interference (MAI) [1].
To maximize the achievable data rate, polyphase sequence
sets with a variety of lengths and alphabet sizes are more
desirable than binary sequence sets for most wireless
mobile communication systems employing adaptive mod-
ulation schemes. In addition, a large number of distinct
sequences may be needed for supporting user requirements
that rapidly increase.
A sequence S ¼fsðtÞg is called a polyphase sequence
with alphabet q if sðtÞ is a qth root of unity for all t. Let
F ¼fs
1
,s
2
,:::,s
M
g beasetofM cyclically distinct
polyphase sequence with period N, where s
i
¼fs
i
ðtÞg for
1£i£M. The periodic cross correlation function between
sequence s
i
and s
j
at the shift phase τ is given by
R
s
i
,s
j
ðτÞ¼
X
N – 1
t¼0
s
i
ðtÞs
j
ðt þ τÞ:
If s
i
¼ s
j
, we call it the periodic autocorrelation function
of sequence s
i
at the shift phase τ, and it is denoted as
R
s
i
ðτÞ. Let R
max
ðFÞ be the maximal correlation of F, i.e.,
R
max
ðFÞ¼maxjR
s
i
,s
j
ðτÞj
for any 0£τ£N – 1if1£i≠j£M and 0<τ£N – 1if
i ¼ j. The sequence family F is said to have low
correlation if R
max
ðFÞ£v
ffiffiffiffi
N
p
for a small constant v.
There exist many designs of sequence families that meet
this asymptotic bound with equality. Readers may refer to
Refs. [1,2] for an overview on this topic.
In Ref. [3], polyphase sequence families with low
correlation were constructed from the shift and addition of
the power residue sequence (Sidelnikov sequence, respec-
tively) and its constant multiple sequences, whose
maximum correlation were shown to be upper bounded
by 2
ffiffiffi
L
p
þ 5or3
ffiffiffi
L
p
þ 4(2
ffiffiffi
L
p
þ 6or3
ffiffiffi
L
p
þ 5for
sequence families from Sidelnikov sequence, respec-
tively), where L is the period of the constructed sequences.
In Ref. [4], more generalized constructions were consid-
ered by the addition of multiple cyclic shifts of power
residue and Sidelnikov sequences, which can be repre-
sented by multiplicative character. Recently, sequence
family of prime period p, family size ðp – 2Þp
r
, and
maximum correlation at most ðr þ1Þ
ffiffiffi
p
p
þ 2 was obtained
by using multiplicative and additive characters in Ref. [5].
In this paper, we generalize the constructions in Ref. [5]
to the general finite field. Our constructions are also based
on multiplicative character and additive character. How-
ever, instead of using the traditional multiplicat ive
character directly, we use it in a way similar to the one
use in the construction of Sidelnikov sequence. Before
presenting our constructions, we review some related
definitions and properties of finite field.
Let p be a prime and q ¼ p
m
, where m is a positive
integer. Let F
q
be a finite field containing q elements.
Given a 2 F
q
,anadditive character of F
q
is a homo-
morphism mapping from additive group ðF
q
,þÞ to ðC
*
, ⋅Þ
defined by
Received February 15, 2012; accepted July 16, 2012
Pinhui KE (✉), Shengyuan ZHANG
Key Laboratory of Network Security and Cryptology, Fujian Normal
University, Fuzhou 350007, China
E-mail: keph@fjnu.edu.cn
Front. Electr. Electron. Eng.
DOI 10.1007/s11460-012-0205-z
1
5
10
15
20
25
30
35
40
45
50
55
1
5
10
15
20
25
30
35
40
45
50
55
FEE-12205-KPH.3d 3/8/012 13:49:34
资源评论
weixin_38669674
- 粉丝: 12
- 资源: 931
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 小程序项目-基于微信小程序的springboot基于微信小程序的学生宿舍管理系统(包括源码,数据库,教程).zip
- 知识库管理系统的数据采集系统,有数据库采集,网站采集,文件采集
- 小程序项目-基于微信小程序的论坛小程序(包括源码,数据库,教程).zip
- 20250108-实验+神经网络
- 小程序项目-基于微信小程序的捷邻小程序(包括源码,数据库,教程).zip
- 小程序项目-基于微信小程序的驾校预约管理系统(包括源码,数据库,教程).zip
- VID20250105192227.mp4
- 小程序项目-基于微信小程序的ssm基于微信小程序的付费自习室系统(包括源码,数据库,教程).zip
- 小程序项目-基于微信小程序的农产品自主供销小程序(包括源码,数据库,教程).zip
- 小程序项目-基于微信小程序的面向企事业单位的项目申报小程序(包括源码,数据库,教程).zip
- 小程序项目-基于微信小程序的springboot微信小程序的点餐系统(包括源码,数据库,教程).zip
- 小程序项目-基于微信小程序的美容院管理系统(包括源码,数据库,教程).zip
- 小程序项目-基于微信小程序的ssm基于微信小程序的短视频系统(包括源码,数据库,教程).zip
- 小程序项目-基于微信小程序的ssm基于微信小程序的跳蚤市场的设计与实现修改(包括源码,数据库,教程).zip
- 小程序项目-基于微信小程序的青少年素质教育培训系统(包括源码,数据库,教程).zip
- 小程序项目-基于微信小程序的食堂线上预约点餐系统(包括源码,数据库,教程).zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功