总结评述了K-means 聚类算法的研究现状,指出K-means 聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means 聚类算法的目标函数、算法流程,并列举了一个实例,指出了数据子集的数目K、初始聚类中心选取、相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means聚类的进一步研究方向。
评论星级较低,若资源使用遇到问题可联系上传者,3个工作日内问题未解决可申请退款~