没有合适的资源?快使用搜索试试~ 我知道了~
用于高分辨率波前校正的液晶空间光调制器的相位非线性补偿
1 下载量 154 浏览量
2021-04-08
22:05:25
上传
评论
收藏 1.3MB PDF 举报
温馨提示
相位调制的能力使液晶空间光调制器(LCSLM)能够控制波前。 但是,其固有的非线性相位响应的缺点将降低波前控制精度。 本文提出了一种基于逆插值法的非线性相位响应补偿方法。 对于256 x 256像素纯相位LCSLM,相位延迟与灰度级的特性曲线已通过逆插值法进行了测量和校准。 通过线性查找表ANTI2.LUT建立并记录了输入灰度级和驱动灰度级之间的映射关系。 通过使用ANTI2.LUT,相位的非线性误差从15.9%降至2.42%。 此外,ANTI2.LUT的映射曲线几乎与制造商提供的290.LUT一致,这证明了相位非线性补偿的效率。 最后,使用基于ANTI2.LUT的LCSLM校正了由液晶片引起的失真波前。 实验结果表明,畸变波前的峰谷值从1.56λ减小到0.26λ(λ= 0.6328μm),均方根值从0.25λ减小到0.02λ,衍射点的Strehl比增加从0.08到0.97。 因此,LCSLM可用于实现具有线性相位响应的高精度和高分辨率波前校正。
资源推荐
资源详情
资源评论



















J. Eur. Opt. Soc.-Rapid 10, 15036 (2015) www.jeos.org
Compensation of phase nonlinearity of liquid crystal
spatial light modulator for high-resolution wavefront
correction
H. Zhang
zhxlj2004@163.com
Intelligent Machine Institute, Harbin University of Science and Technology
H. Zhou Intelligent Machine Institute, Harbin University of Science and Technology
J. Li Intelligent Machine Institute, Harbin University of Science and Technology
Y. J. Qiao Intelligent Machine Institute, Harbin University of Science and Technology
J. Si Intelligent Machine Institute, Harbin University of Science and Technology
W. Gao Institute of Photonics and Optical Fiber Technology, Harbin University of Science and Technology, No.
52 Xuefu Road, Harbin, Heilongjiang, 150080, China
The ability of phase modulation enables liquid crystal spatial light modulator (LCSLM) to control wavefront. However, the disadvantage of
its inherent nonlinear phase response will decrease the wavefront control accuracy. In this paper, a compensation for the nonlinear phase
response is proposed based on Inverse Interpolation method. Characteristic curve of phase retardation versus gray levels for a 256×256
pixels phase-only LCSLM has been measured and calibrated by Inverse Interpolation. A mapping relationship between input gray levels and
driving gray levels has been built and recorded by a linear look-up table ANTI2.LUT. The nonlinear error of the phase drops from 15.9% to
2.42% by using ANTI2.LUT. Further more, the mapping curve of ANTI2.LUT is almost consistent with 290.LUT from the manufacturer, which
proved the efficiency of the compensation of phase nonlinearity. Finally, the distorted wavefront caused by a liquid crystal flake is corrected
using LCSLM based on ANTI2.LUT. Experimental results show that the peak-valley value of the distorted wavefront decreases from 1.56λ to
0.26λ (λ = 0.6328 µm), the root-mean-square value decreases from 0.25λ to 0.02λ and the Strehl ratio of diffractive spots increases from
0.08 to 0.97. So LCSLM can be applied to realize high-precision and high-resolution wavefront correction with linear phase response.
[DOI: http://dx.doi.org/10.2971/jeos.2015.15036]
Keywords: Wavefront correction, phase nonlinearity compensation, inverse interpolation, liquid crystal spatial light modulator
1 INTRODUCTION
Liquid crystal spatial light modulator (LCSLM) is regarded as
a perfect wavefront controller because of its advantages such
as low-power consumption, high-resolution, non-mechanical
and programming control. As a dynamic diffraction device,
LCSLM has wide applications in adaptive optics [1, 2],
laser beam shaping and scan [3]–[7], real-time hologram
display [8, 9] and holographic optical tweezers [10, 11].
However, the inherent nonlinearity of phase versus gray
level addressed by LCSLM limits its performance in these
applications. Especially in the field of adaptive optics, when
LCSLM is used as a wavefront corrector, phase nonlinearity
leads to the complex transform of feedback signals, which will
reduce the data processing efficiency and further introduce
a transform error. To overcome the existed shortage, most
manufacturers of LCSLMs have already provided linear look-
up tables (LUTs) to meet the requirement for linear driving.
However, after many times of operation, the linear look-up
tables should be calibrated again to meet the precision
requirement. Therefore, it is necessary for users to develop a
phase nonlinearity compensation method independently for
high-precision wavefront correction.
A method of Gamma correction is a mature method for liq-
uid crystal displays [12, 13]. In order to satisfy the subjective
sense of human eyes to object light, it is necessary to gener-
ate a power function relationship between the output light
intensity E(x, y) and input signal D in the liquid crystal dis-
play, which is called a Gamma curve. It can be expressed as
E(x, y ) = D
γ
. But the actual curve of liquid crystal transmit-
tance versus control voltages show a S-shaped distribution. So
the Gamma correction curve can be obtained by a nonlinear
transformation of reverse S-shaped point by point. Gamma
correction needs a long time-consuming and is not suitable
for phase-only LCSLM which asks a linear driving relation-
ship between the phase retardation and the control voltage. In
addition, another simple method of phase nonlinear compen-
sation is an approximate correction method for the phase-only
LCSLM [14, 15]. An approximate linear length of the curve of
the phase retardation versus control voltage can be chosen as
the linear work curve. The approximate linear curve can be
directly used to drive LCSLM without setting the linear LUT.
However, the resolution of control commands cannot meet
the requirement of high-resolution phase control. Except for
Received May 10, 2015; revised ms. received June 20, 2015; published July 12, 2015 ISSN 1990-2573
资源评论


weixin_38626928
- 粉丝: 2
- 资源: 948
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 基于MPC的燃料电池混合动力系统能量管理策略(含性能衰退考虑、精准预测与工况适应性)matlab编程实现,基于MPC的燃料电池混合动力系统能量管理策略:性能衰退考量与精准预测框架切换能力(附详细注释)
- diboot-SQL资源
- 基于K-means算法的聚类实现方法在Matlab平台下的.m文件实现,基于KMeans算法的聚类实现:Matlab编程实践或Matlab中K-means聚类算法详解,kmeans算法实现聚类 编程平
- 计算机二级习题-计算机二级资源
- leaflet.js库文件
- fresh_shop 安卓商城,安卓毕业设计-毕业设计资源
- 永磁同步电机MTPA最大转矩电流比与弱磁模型研究:公式法、查表法、牛顿法及matlab自动生成脚本指南,永磁同步电机MTPA最大转矩电流比与弱磁模型详解:公式法、查表法、牛顿法及自动表格生成脚本实践指
- leaflet.css样式文件
- 基于电流矢量闭环控制的改进if控制策略研究:优化电机性能,提升系统稳定性和效率,基于新型电流矢量控制的改进IF控制策略:实现电机的高效精确与强抗扰动能力,改进的if控制策略研究,传统的if控制严重依赖
- java银行信息管理系统毕设(源码+展示)
- 基于FPGA的Verilog语言实现FOC控制:三相永磁同步与异步电机的开环闭环PI控制策略,基于FPGA的Verilog语言实现FOC控制:三相永磁同步与异步电机的开环闭环PI控制策略,FPGA-V
- mumicm_dlut-美赛资源
- 松下FP-XH四轴运动控制程序:从手动操作到参数设置的全流程详解,附详细注释,适用于实际工程,学习模板示例,松下PLCFPXH四轴运动控制程序:从手动操作到参数设置,带详细注释的工程级模板,松下FP
- 人工智能实战项目-智慧交通视频教程
- 汇川PLC程序框架:结构化、注释清晰,涵盖伺服控制、气缸控制,具有广泛适用性,汇川PLC程序框架:结构清晰、注释详尽,适用于多种PLC系统,包含伺服控制及气缸控制功能,汇川H3U的一个比较完整的程序框
- 技嘉h61m-ds2,ver2.0主板,BIOS驱动 F10a
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
