一种实时轮廓误差估算方法二一李培新马跃于东等
一种实时轮廓误差估算方法
李培新
1
马跃
2
于东
2
王志成
1
,
2
韩旭
3
1.中国科学院研究生院,北京,
100049
2.
中国科学院沈阳计算技术研究所高档数控国家工程研究中心,沈阳,
110171
3.
沈阳高精数控技术有限公司,沈阳,
110171
摘要:在分析离线轮廓误差计算方法的基础上,针对高档数控系统实时任务的要求,提出了一种在
线实时估算轮廓误差的方法。该方法克服了对于任意加工曲线,轮廓误差计算过程复杂、计算量大、难
以应用到实时任务的缺点。双轴运动实验证明,该算法计算量极小,能够满足实时计算的要求,估算的
轮廓误差具有很高的精度,可以指导当前控制参数的选取并可实时查看轮廓误差的控制效果。
关键词:控制精度
F
轮廓误差;实时任务;双轴运动
中图分类号:
TP30
1.
6
文章编号:
1004-132XC20
1l
)04
一
0419
一
05
A
Method
of
Real-
time
Estimation
of
Contouring
Errors
Li
Peixin
1
Ma
Yue
2
Yu
Dong
2
Wang
Zhich
eng
I.
2
Han
Xu
3
1.
Graduate
School
of
Chinese
Academy
of
Sciences
,Beijing, 100049
2.
National
Engineering
Research
Centre
for
High-end
CNC
,
Shenyang
Institute
of
Computing
Technology
,
Chinese
Academy
of
Sciences
,
Shenyang
, 110171
3.
Shenyang
Golding
NC
Tech.
Co. ,
Lt
d. ,
Shenyang
,1l
0171
Abstract:
Based
on
the
study
of
contour
error
calculation
methods
detailed
, a
novel
approach
for
estimating
the
contour
errors
in
real-
time
was
proposed
for
the
requirements
of
real-
time
task
in
high
-
end
CNC.
This
method
solved
the
problems
which
,
for
free -
form
curve
,
the
contour
error
calculation
process
is
complex
and
needs
large
computations.
Experimental
results
for
a
biaxial
motion
system
show
that
the
proposed
approach
has
very
small
amount
of
computation
and
owns
very
high
calculation
accuracy
in
real-
time
tasks
and
it
can
guide
the
selection
of
the
current
control
parameters
and
observe
the
control
effects
of
the
contour
errors.
Key
words:
control
precision;
contour
error;
real-
time
task;
biaxial
motion
system
O
引言
轮廓误差的计算是高档数控系统的→个重要
研究课题。目前离线计算轮廓误差的方法很
多〔叫,虽然这些方法的计算精度很高,但是由于
其计算复杂、计算时间较长,很难应用到实时计算
轮廓误差的任务中。实时计算轮廓误差方法在工
程上可以指导控制参数的选取,并为实时轮廓误
差控制方法(如交叉搞合控制方法)提供支持臼
-7J
。
目前,许多研究实时估算轮廓误差的方法中,轮廓
误差的估算与跟随误差直接相关怀l1
J
。然而,这
些轮廓误差估算方法对跟随误差的依赖性很大,
估算的精度有待进→步提高,如
Yeh
等问提出的
实时轮廓误差估算方法,对跟随误差有比较苛刻
的要求。从数学上分析,计算轮廓误差最直接和
有效的方法是计算反馈点到指令曲线的最短距
离。这种方法计算的轮廓误差计算精度高,然而
对于任意加工曲线,这种方法计算时间长,计算复
杂,适合离线计算。为了达到实时估算轮廓误差
收稿日期
:2010-05-07
基金项目
z
国家科技重大专项
(2011ZX04016-
07
1)
的要求,需要将其作相应的简化。本文对上述离
线计算方法进行修改,提出一种轮廓误差实时估
算方法,该方法具有计算量小和精度高的优点,能
够满足多种工程需要。
1
离线轮廓误差计算
1.
1
线性轨迹命令下的轮廓误差
图
1
给出了线性轨迹命令下的轮廓误差计算
方法,图中
,
P
为实际位置点
,
R
为指令位置点,
ε
为轮廓误差
,
e
为跟随误差。
YL
二二。一
X
图
1
线性轨迹命令下轮廓误差计算
由图
1
可知,
ε
为点
P
到指令轨迹(直线)的距
离。设点
P
的坐标为
Cx'
,
y')
,
指令轨迹方程为
则
Ax
十
By
十
c=
0
(1)
l
Ax'
十
By'
十
C[
ε~
互
7τ
t-
B'
(2)
• 419 •