基于基于ADSP-TS101的数字电路设计仿真的数字电路设计仿真
基于ADSP-TS101高速信号处理系统采用了集成系统设计,硬件部分引入信号完整性分析的设计方法进行高速
数字电路的设计,要解决系统中主处理器在较高工作频率300 MHz下稳定工作的问题,以及在两个主芯片之间
和主芯片与数据存储芯片之间数据高速互联的问题,提高系统的性能,满足设计要求。 1 系统硬件设计
1.1 数模混合部分的设计 A/D是数字和模拟混合部分,是设计重点考虑的部分之一。数字部分的频率
高,模拟部分对于扰很敏感,处理不好,数字信号很容易干扰模拟信号,出现电磁干扰问题。降低数字信号和
模拟信号间的相互干扰,要掌握电磁兼容的两个原则:尽可能减小电流环路的面积;系统只采用一
基于ADSP-TS101高速信号处理系统采用了集成系统设计,硬件部分引入信号完整性分析的设计方法进行高速数字电路的
设计,要解决系统中主处理器在较高工作频率300 MHz下稳定工作的问题,以及在两个主芯片之间和主芯片与数据存储芯片之
间数据高速互联的问题,提高系统的性能,满足设计要求。
1 系统硬件设计系统硬件设计
1.1 数模混合部分的设计
A/D是数字和模拟混合部分,是设计重点考虑的部分之一。数字部分的频率高,模拟部分对于扰很敏感,处理不好,数
字信号很容易干扰模拟信号,出现电磁干扰问题。降低数字信号和模拟信号间的相互干扰,要掌握电磁兼容的两个原则:尽可
能减小电流环路的面积;系统只采用一个参考面。
系统仅有一个A/D转换器,采用混合信号PCB的分区设计,即使用同一地,如图1所示。将PCB分区为模拟部分和数字
部分,在A/D器件的下面把模拟地和数字地部分连接在一起。保证两个地之间的连接桥宽度与IC等宽,所有信号线一般都不
能跨越分割间隙,跨越分割间隙的信号线要位于紧邻大面积地的布线层上。电路板的所有层中数字信号只能在电路板的数字部
分布线,模拟信号只能在电路板的模拟部分布线,模拟和数字电源分开。
1.2 高密度(HD)电路的设计
TS101硬件电路的设计属于高密度电路,是整个印制板设计的难点之一。TS101采用BGA封装,焊球25×25阵列,焊球之
间间距为1 mm,没有空白区。焊盘直径的下限是O.45 mm(18 mil),这里采用0.51 mm(20 mil)。1每个焊盘都是表贴(无通
孔)无阻焊。对最外圈的两排焊球,信号线直接从表面层直接引出,内圈焊球向外的引线采用打过孔的方式,从焊盘向对角引
线,在4个相邻焊盘的对角线中间打一个外径O.5 mm(20 mil),内孔径O.25 mm(10 mil)的带阻焊通孔,然后将信号线从电
路板的其他层引出去。这些引线的线宽和线距的下限都是0.15 mm(6 mil)。
TS101一般工作在250 MHz或300 MHz,为保持电源和地层的连续性和较好的去耦效果,设计中采用AD公司推荐的连接
方式,用6个0.1uf和2个0.01uf的贴片电容焊在与TS101芯片中央位置相对的电路板的另一面,其连接方法如图2所示。图中方
块部分为去耦电容。