# Copyright 1996-2022 Cyberbotics Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import ctypes
import sys
import typing
from .wb import wb
from .node import Node
from .device import Device
from .accelerometer import Accelerometer
from .altimeter import Altimeter
from .brake import Brake
from .camera import Camera
from .compass import Compass
from .connector import Connector
from .display import Display
from .distance_sensor import DistanceSensor
from .emitter import Emitter
from .gps import GPS
from .gyro import Gyro
from .inertial_unit import InertialUnit
from .led import LED
from .lidar import Lidar
from .light_sensor import LightSensor
from .motor import Motor
from .pen import Pen
from .position_sensor import PositionSensor
from .radar import Radar
from .range_finder import RangeFinder
from .receiver import Receiver
from .skin import Skin
from .speaker import Speaker
from .touch_sensor import TouchSensor
from .joystick import Joystick
from .keyboard import Keyboard
from .mouse import Mouse
class Robot:
EVENT_QUIT = -1
EVENT_NO_EVENT = 0
EVENT_MOUSE_CLICK = 1
EVENT_MOUSE_MOVE = 2
EVENT_KEYBOARD = 4
EVENT_JOYSTICK_BUTTON = 8
EVENT_JOYSTICK_AXIS = 16
EVENT_JOYSTICK_POV = 32
MODE_SIMULATION = 0
MODE_CROSS_COMPILATION = 1
MODE_REMOTE_CONTROL = 2
created = None
wb.wb_robot_get_name.restype = ctypes.c_char_p
wb.wb_robot_get_model.restype = ctypes.c_char_p
wb.wb_robot_get_custom_data.restype = ctypes.c_char_p
wb.wb_robot_get_basic_time_step.restype = ctypes.c_double
wb.wb_robot_get_time.restype = ctypes.c_double
wb.wb_robot_get_name.restype = ctypes.c_char_p
wb.wb_robot_battery_sensor_get_value.restype = ctypes.c_double
wb.wb_robot_wwi_receive_text.restype = ctypes.c_char_p
wb.wb_robot_get_urdf.restype = ctypes.c_char_p
wb.wb_robot_get_project_path.restype = ctypes.c_char_p
wb.wb_robot_get_world_path.restype = ctypes.c_char_p
def __init__(self):
if Robot.created:
print('Error: only one Robot instance can be created per controller process.', file=sys.stderr)
return
Robot.created = self
wb.wb_robot_init()
self.devices = {}
n = wb.wb_robot_get_number_of_devices()
for i in range(0, n):
tag = wb.wb_robot_get_device_by_index(i)
name = wb.wb_device_get_name(tag).decode()
type = wb.wb_device_get_node_type(tag)
if type == Node.ACCELEROMETER:
self.devices[name] = Accelerometer(tag)
elif type == Node.ALTIMETER:
self.devices[name] = Altimeter(name)
elif type == Node.BRAKE:
self.devices[name] = Brake(tag)
elif type == Node.CAMERA:
self.devices[name] = Camera(tag)
elif type == Node.COMPASS:
self.devices[name] = Compass(tag)
elif type == Node.CONNECTOR:
self.devices[name] = Connector(tag)
elif type == Node.DISPLAY:
self.devices[name] = Display(tag)
elif type == Node.DISTANCE_SENSOR:
self.devices[name] = DistanceSensor(tag)
elif type == Node.EMITTER:
self.devices[name] = Emitter(tag)
elif type == Node.GPS:
self.devices[name] = GPS(tag)
elif type == Node.GYRO:
self.devices[name] = Gyro(tag)
elif type == Node.INERTIAL_UNIT:
self.devices[name] = InertialUnit(tag)
elif type == Node.LED:
self.devices[name] = LED(tag)
elif type == Node.LIDAR:
self.devices[name] = Lidar(tag)
elif type == Node.LIGHT_SENSOR:
self.devices[name] = LightSensor(tag)
elif type == Node.LINEAR_MOTOR or type == Node.ROTATIONAL_MOTOR:
self.devices[name] = Motor(tag)
elif type == Node.PEN:
self.devices[name] = Pen(tag)
elif type == Node.POSITION_SENSOR:
self.devices[name] = PositionSensor(tag)
elif type == Node.RADAR:
self.devices[name] = Radar(tag)
elif type == Node.RANGE_FINDER:
self.devices[name] = RangeFinder(tag)
elif type == Node.RECEIVER:
self.devices[name] = Receiver(tag)
elif type == Node.SKIN:
self.devices[name] = Skin(tag)
elif type == Node.SPEAKER:
self.devices[name] = Speaker(tag)
elif type == Node.TOUCH_SENSOR:
self.devices[name] = TouchSensor(tag)
else:
print('Unsupported device type: ' + str(type) + ' for device named "' + name + '"', file=sys.stderr)
self.keyboard = Keyboard(0)
self.mouse = Mouse(0)
self.joystick = Joystick(0)
def __del__(self):
wb.wb_robot_cleanup()
def getAccelerometer(self, name: str) -> Accelerometer:
print('DEPRECATION: Robot.getAccelerometer is deprecated, please use Robot.getDevice instead.', file=sys.stderr)
return self.getDevice(name)
def getAltimeter(self, name: str) -> Altimeter:
print('DEPRECATION: Robot.getAltimeter is deprecated, please use Robot.getDevice instead.', file=sys.stderr)
return self.getDevice(name)
def getBrake(self, name: str) -> Brake:
print('DEPRECATION: Robot.getBrake is deprecated, please use Robot.getDevice instead.', file=sys.stderr)
return self.getDevice(name)
def getCamera(self, name: str) -> Camera:
print('DEPRECATION: Robot.getCamera is deprecated, please use Robot.getDevice instead.', file=sys.stderr)
return self.getDevice(name)
def getCompass(self, name: str) -> Compass:
print('DEPRECATION: Robot.getCompass is deprecated, please use Robot.getDevice instead.', file=sys.stderr)
return self.getDevice(name)
def getConnector(self, name: str) -> Connector:
print('DEPRECATION: Robot.getConnector is deprecated, please use Robot.getDevice instead.', file=sys.stderr)
return self.getDevice(name)
def getDisplay(self, name: str) -> Display:
print('DEPRECATION: Robot.getDisplay is deprecated, please use Robot.getDevice instead.', file=sys.stderr)
return self.getDevice(name)
def getDistanceSensor(self, name: str) -> DistanceSensor:
print('DEPRECATION: Robot.getDistanceSensor is deprecated, please use Robot.getDevice instead.', file=sys.stderr)
return self.getDevice(name)
def getEmitter(self, name: str) -> Emitter:
print('DEPRECATION: Robot.getEmitter is deprecated, please use Robot.getDevice instead.', file=sys.stderr)
return self.getDevice(name)
def getGPS(self, name: str) -> GPS:
print('DEPRECATION: Robot.getGPS is deprecated, please use Robot.getDevice instead.', file=sys.stderr)
return self.getDevice(name)
def getGyro(self, name: str) -> Gyro:
print('DEPRECATION: Robot.getGyro is deprecated, please use Robot.getDevice instead.', file=sys.stderr)
return self.getDevice(name)
def getInertialUnit(self, name: str) -> InertialUnit:
print('DEPRECATION: Robot.getInertialUnit is deprecated, please use Robo
webots+python多机器人仿真
需积分: 0 109 浏览量
更新于2023-05-29
2
收藏 87KB 7Z 举报
在本文中,我们将深入探讨如何使用Webots与Python进行多机器人仿真。Webots是一个强大的开源仿真平台,允许用户创建、编程和模拟各种机器人系统。Python作为一种广泛使用的编程语言,因其简洁明了的语法和丰富的库支持,常被用于编写机器人控制逻辑。结合Webots的仿真环境和Python的编程能力,可以实现复杂的多机器人协同探索任务。
我们需要了解Webots的基本操作。Webots提供了一个图形化用户界面(GUI),用户可以通过拖拽、编辑来构建机器人模型。每个模型都由多个部件组成,如马达、传感器、控制器等。在创建多机器人场景时,你需要为每个机器人定义一个独立的模型,并配置它们的位置和初始状态。
接下来,我们要利用Webots的内置Python API,这使得我们可以直接在Python环境中编写控制代码。Webots的Python API提供了对仿真世界的访问,包括读取和修改机器人的状态、获取传感器数据以及控制马达等。通过API,你可以实现如避障、路径规划、通信和协作等功能。
对于多机器人协同探索,我们需要设计一套有效的通信机制。在Python中,可以使用网络库如socket或ZeroMQ实现机器人间的无线通信。每台机器人会广播其位置和发现的信息,其他机器人接收并处理这些信息,以决定自己的行动。这种分布式计算的方法能够实现大规模机器人系统的协调。
在多机器人探索任务中,路径规划是核心问题之一。可以使用A*算法或者Dijkstra算法寻找最短路径,避开已知障碍。Python有许多现成的库,如networkx,可以帮助我们实现这些算法。
此外,传感器的使用也是关键。Webots支持多种传感器,例如激光雷达、摄像头、超声波传感器等。Python API允许我们读取这些传感器的数据,用于环境感知和障碍检测。例如,可以使用激光雷达数据构建 occupancy grid地图,进一步辅助机器人导航。
为了实现多机器人协作,可能还需要引入全局和局部的SLAM(Simultaneous Localization and Mapping,同时定位与建图)算法。SLAM允许机器人在未知环境中定位自身并构建环境地图。Python中有许多开源SLAM库,如g2o和EKF-SLAM,可以集成到Webots仿真中。
为了测试和优化算法,我们需要编写脚本以自动运行和评估仿真。Python的unittest或pytest框架可以帮助我们编写自动化测试,确保算法在不同场景下的性能。
总结来说,结合Webots的物理仿真环境和Python的编程能力,我们可以实现多机器人系统的复杂行为,如协同探索、路径规划、避障和通信。通过不断试验和优化,这个工具包“sim_multirobot_exploration”将帮助研究者和开发者在实际应用之前验证和改进他们的多机器人策略。
我太不严肃了
- 粉丝: 15
- 资源: 1
最新资源
- 20-劳务合同【模特,对个人】.docx
- 06-高级管理人员劳动合同.docx
- 04-餐厅服务员用工合同范本.docx
- 08-厨师劳动合同书【行政总厨】.docx
- 09-厨师聘用协议【酒店】.docx
- 202201108-结算记录.xls
- linux常用命令大全笔记.md
- linux常用命令大全笔记.md
- linux常用命令大全笔记.md
- 02-酒店劳动合同书【模板】.docx
- 深入解析CDN:原理、作用及应用场景
- 16-教师聘任合同书【小学临时代课】.docx
- 鸢尾花连续变量和分类变量的可视化
- python+OpenCV实现全景图像拼接和图像黑边处理项目源码.zip
- 2024年半导体产业链图谱
- Self-supervised Learning of Adversarial Example:Towards Good Generalizations for Deepfake Detection