Texas Instruments 16 AAJ 3Q 2015
IndustrialAnalog Applications Journal
Ceramic or electrolytic output capacitors
in DC/DC converters—Why not both?
Introduction
Switching power supplies are used in almost every end-
equipment that needs a long battery life, low heat genera-
tion, or to meet ENERGY STAR
®
guidelines. When
designing a switching power supply, it is difficult to decide
which output capacitor type to use.
Electrolytic capacitors have high equivalent series resis-
tance (ESR), making power loss high and transient
response too poor for use with tough load-response
requirements. However, electrolytic capacitors have stable
capacitance with high bias voltage and are inexpensive.
Ceramic capacitors have very low ESR, but capacitance
is reduced greatly with high bias voltage and can be
expensive for large values. The effective capacitance of a
ceramic capacitor can be less than half the rated capaci-
tance in many buck converters.
Today’s buck regulators typically use just one type of
output capacitor because it becomes too difficult to design
with different capacitances and ESRs. This forces many
designers to use more expensive capacitor types like
polymer or tantalum that provide lower ESR than electro-
lytic, but not as low as ceramic. Now a stable design with
mixed output capacitors can be prepared in minutes by
using new design tools. To illustrate this concept, this
article describes the design of a DC/DC supply with mixed
output capacitors.
Causes of output variation under load
The first step is to understand what the output capacitor
does in the system. Figure 1 shows idealized waveforms
with contributions of output-capacitor characteristics and
where they occur in a load-transient event.
The spikes at the load transients are primarily caused by
equivalent series inductance (ESL) or impedance of the
output cap at very high frequencies. Fixed inductor-
current slopes cause the bulk of the transient-event
disturbance in the inductor current to overshoot and
undershoot.
[1]
Recovery from the load-step transient also
causes overshoot and undershoot. Minimizing these lower
frequency errors relies on energy stored in the output
capacitor and the voltage-loop response time. So, it is
important to have a wide loop bandwidth, low ESR, and
enough output capacitance for adequate storage.
There are two primary factors for maintaining low-noise
output under load: 1) how much overshoot and under-
shoot the regulator will have; and 2) how much ripple
voltage occurs at the switching frequency. Peak overshoot/
undershoot is approximately the load-step current times
the impedance of output capacitors at the loop crossover
frequency (Equation 1). The equation emphasizes the
importance of having low output-capacitor impedance at
the loop crossover frequency (f
C
) to get low overshoot or
undershoot. The loop crossover frequency is usually
targeted to be one-tenth the switching frequency. A higher
loop crossover frequency minimizes overshoot/undershoot.
V
OVER/UNDER SHOOT
≈ D I
OUT
× Z
OUT
(f
C
) (1)
An approximation for output ripple voltage is the output
capacitor’s impedance at the switching frequency times
the peak-to-peak inductor current.
[2]
V
RIPPLE
≈ I
L(P-P)
× Z
OUT
(f
SW
) (2)
Equation 2 shows that the output ripple voltage can be
reduced by reducing the peak-to-peak inductor current,
which is controlled by increasing the inductance value.
By Michael Score
Senior Member Technical Staff, Field Applications Engineering
Figure 1. An idealized load-transient plot
Output
Currents
V
OUT
(AC
Coupled)
I
Load
0
ESR & ESL
ESR & ESL
C
Out
C
Out
I
Inductor
C
Out
& ESR
V
Spike
V
Under
V
Over
引言
在几乎所有需要长电池寿命
、
低发热量及满足能源之星
(ENERGY STAR
®
)
指导方针的终端设备中
,
都采用了开
关电源
。
当设计开关电源时
,
决定使用哪种类型的输出
电容器是一件很困难的事情
。
电解电容器具有高等效串联电阻
(ESR)
,
这使得功率损
耗很高且瞬态响应过差
,
因而无法在负载响应要求严苛
的场合中使用
。
然而
,
电解电容器在高偏置电压条件下
拥有稳定的电容
,
而且价格便宜
。
陶瓷电容器具有非常低的
ESR
,
但其电容在高偏置电压
下大幅减小
,
而且大数值陶瓷电容器的价格会很昂贵
。
在许多降压型转换器中
,
陶瓷电容器的有效电容有可能
不到其额定电容的一半
。
如今的降压型转换器通常只采用一种类型的输出电容
器
,
因为针对不同的电容和
ESR
进行设计将变得过于困
难
。
这造成许多设计人员被迫采用诸如聚合物或钽等更
加昂贵的电容器类型
,
此类电容器可提供低于电解电容
器的
ESR
,
但没有陶瓷电容器那么低
。
现在
,
通过运用
新型设计工具
,
只需短短几分钟便可做好使用混合型输
出电容器来实现稳定设计的准备
。
为了阐明该原理
,
本
文将描述采用混合型输出电容器进行的
DC/DC
电源设
计
。
在负载条件下发生输出变化的原因
第一步需要弄清输出电容器在系统所起的作用
。
图
1
给
在
DC/DC
转换器中采用陶瓷或电解输出
电容器
-
为什么不能兼用呢?
作者:
Michael Score
高级技术组成员,现场应用工程
图
1
:理想化的负载瞬变曲线图
AAJ 2015
年第三季度
德州仪器
模拟应用期刊
工业
出了理想化波形
,
并示出了输出电容器特性产生的影响
以及它们在负载瞬变过程中出现的位置
。
负载瞬变时出现的尖峰主要是由输出电容器的等效串联
电阻
(ESR)
或阻抗在非常高的频率下引起的
。
固定的电
感器电流斜坡导致电感器中的大部分瞬变扰动产生过冲
和下冲
。
[1]
另外
,
从负载阶跃瞬变的恢复过程也会引发
过冲和下冲
。
要想最大限度地减少这些低频误差
,
则需
仰仗输出电容器中存储的电能和电压环路响应时间
。
因
此
,
应拥有宽环路带宽
、
低
ESR
以及足够的输出电容
(
以提供充足的电能存储
),
这一点很重要
。
在负载条件下保持低噪声输出涉及两个主要的因素
:
1)
稳压器将具有多大的过冲和下冲
;
2)
在开关频率下出现
的纹波电压有多大
。
峰值过冲
/
下冲约为负载阶跃电流乘
以输出电容器在环路交叉频率下的阻抗
(
(1)
式
)。
该式
强调了在环路交叉频率
(f
C
)
下拥有低输出电容器阻抗对
于实现低过冲或下冲的重要性
。
环路交叉频率通常被定
为开关频率的十分之一
。
较高的环路交叉频率可最大限
度地抑制过冲
/
下冲
。
V
OVER/UNDER SHOOT
≈
Δ
I
OUT
x Z
OUT
(f
C
) (1)
输出纹波电压的一种近似计算法为
:
输出电容器在开关
频率下的阻抗乘以峰至峰电感器电流
。
[2]
V
RIPPLE
≈
I
L(P-P)
x Z
OUT
(f
SW
) (2)
(2)
式表明
:
输出纹波电压可通过减小峰至峰电感器电流
(
其通过增加电感值来控制
)
得以降低
。