# DeepCTR-Torch
[![Python Versions](https://img.shields.io/pypi/pyversions/deepctr-torch.svg)](https://pypi.org/project/deepctr-torch)
[![Downloads](https://pepy.tech/badge/deepctr-torch)](https://pepy.tech/project/deepctr-torch)
[![PyPI Version](https://img.shields.io/pypi/v/deepctr-torch.svg)](https://pypi.org/project/deepctr-torch)
[![GitHub Issues](https://img.shields.io/github/issues/shenweichen/deepctr-torch.svg
)](https://github.com/shenweichen/deepctr-torch/issues)
[![Documentation Status](https://readthedocs.org/projects/deepctr-torch/badge/?version=latest)](https://deepctr-torch.readthedocs.io/)
![CI status](https://github.com/shenweichen/deepctr-torch/workflows/CI/badge.svg)
[![codecov](https://codecov.io/gh/shenweichen/DeepCTR-Torch/branch/master/graph/badge.svg?token=m6v89eYOjp)](https://codecov.io/gh/shenweichen/DeepCTR-Torch)
[![Disscussion](https://img.shields.io/badge/chat-wechat-brightgreen?style=flat)](./README.md#disscussiongroup)
[![License](https://img.shields.io/github/license/shenweichen/deepctr-torch.svg)](https://github.com/shenweichen/deepctr-torch/blob/master/LICENSE)
PyTorch version of [DeepCTR](https://github.com/shenweichen/DeepCTR).
DeepCTR is a **Easy-to-use**,**Modular** and **Extendible** package of deep-learning based CTR models along with lots of core components layers which can be used to build your own custom model easily.You can use any complex model with `model.fit()`and `model.predict()` .Install through `pip install -U deepctr-torch`.
Let's [**Get Started!**](https://deepctr-torch.readthedocs.io/en/latest/Quick-Start.html)([Chinese Introduction](https://zhuanlan.zhihu.com/p/53231955))
## Models List
| Model | Paper |
| :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Convolutional Click Prediction Model | [CIKM 2015][A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) |
| Factorization-supported Neural Network | [ECIR 2016][Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) |
| Product-based Neural Network | [ICDM 2016][Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) |
| Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) |
| DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) |
| Piece-wise Linear Model | [arxiv 2017][Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) |
| Deep & Cross Network | [ADKDD 2017][Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) |
| Attentional Factorization Machine | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) |
| Neural Factorization Machine | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) |
| xDeepFM | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) |
| Deep Interest Network | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) |
| Deep Interest Evolution Network | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
| AutoInt | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) |
| ONN | [arxiv 2019][Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) |
| FiBiNET | [RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf) |
| IFM | [IJCAI 2019][An Input-aware Factorization Machine for Sparse Prediction](https://www.ijcai.org/Proceedings/2019/0203.pdf) |
| DCN V2 | [arxiv 2020][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535) |
| DIFM | [IJCAI 2020][A Dual Input-aware Factorization Machine for CTR Prediction](https://www.ijcai.org/Proceedings/2020/0434.pdf) |
| AFN | [AAAI 2020][Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions](https://arxiv.org/pdf/1909.03276) |
| SharedBottom | [arxiv 2017][An Overview of Multi-Task Learning in Deep Neural Networks](https://arxiv.org/pdf/1706.05098.pdf) |
| ESMM | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://dl.acm.org/doi/10.1145/3209978.3210104) |
| MMOE | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
| PLE | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/10.1145/3383313.3412236) |
## DisscussionGroup & Related Projects
- [Github Discussions](https://github.com/shenweichen/DeepCTR/discussions)
- Wechat Discussions
|公众号:浅梦学习笔记|微信:deepctrbot|学习小组 [加入](https://t.zsxq.com/026UJEuzv) [主题集合](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect)|
|:--:|:--:|:--:|
| [![公众号](./docs/pics/code.png)](https://github.com/shenweichen/AlgoNotes)| [![微信](./docs/pics/deepctrbot.png)](https://github.com/shenweichen/AlgoNotes)|[![学习小组](./docs/pics/planet_github.png)](https://t.zsxq.com/026UJEuzv)|
- Related Projects
- [AlgoNotes](https://github.com/shenweichen/AlgoNotes)
- [DeepCTR](https://github.com/shenweichen/DeepCTR)
- [DeepMatch](https://github.com/shenweichen/DeepMatch)
- [GraphEmbedding](https://github.com/shenweichen/GraphEmbedding)
## Main Contributors([welcome to join us!](./CONTRIBUTING.md))
<table border="0">
<tbody>
<tr align="center" >
<td>
<a href="https://github.com/shenweichen"><img width="70" height="70" src="https://github.com/shenweichen.png?s=40" alt="pic"></a><br>
<a href="https://github.com/shenweichen">Shen Weichen</a>
<p> Alibaba Group </p>
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
deep ctr torch 源代码 deep ctr torch 源代码 deep ctr torch 源代码 deep ctr torch 源代码 deep ctr torch 源代码 deep ctr torch 源代码 deep ctr torch 源代码 deep ctr torch 源代码 deep ctr torch 源代码 deep ctr torch 源代码deep ctr torch 源代码deep ctr torch 源代码deep ctr torch 源代码deep ctr torch 源代码deep ctr torch 源代码deep ctr torch 源代码deep ctr torch 源代码deep ctr torch 源代码deep ctr torch 源代码deep ctr torch 源代码deep ctr torch 源代码
资源推荐
资源详情
资源评论
收起资源包目录
deep ctr torch 源代码 (168个子文件)
make.bat 779B
.gitattributes 66B
.gitignore 2KB
AFN.jpg 180KB
code2.jpg 52KB
LICENSE 11KB
Makefile 608B
Features.md 17KB
Examples.md 12KB
README.md 10KB
Quick-Start.md 3KB
History.md 3KB
FAQ.md 2KB
CONTRIBUTING.md 1KB
feature_request.md 620B
question.md 609B
bug_report.md 551B
mlr1.png 531KB
ONN.png 388KB
mlrvsdnn.png 374KB
DSIN.png 218KB
DeepFM.png 204KB
DIEN.png 194KB
fms.png 192KB
PLE.png 191KB
ESMM.png 184KB
FiBiNET.png 182KB
CIN.png 181KB
FNN.png 166KB
DIN.png 154KB
WDL.png 153KB
CCPM.png 147KB
FGCNN.png 142KB
MLR.png 136KB
DCN.png 107KB
AFM.png 105KB
DIFM.png 99KB
MMOE.png 95KB
xDeepFM.png 90KB
NFM.png 81KB
AutoInt.png 80KB
weichennote.png 69KB
PNN.png 66KB
DCN-M.png 65KB
IFM.png 59KB
DCN-Mix.png 56KB
InteractingLayer.png 47KB
SharedBottom.png 32KB
code.png 29KB
criteo_sample.png 25KB
deepctrbot.png 21KB
movielens_sample_with_genres.png 20KB
movielens_sample.png 18KB
planet_github.png 8KB
interaction.py 31KB
basemodel.py 24KB
dien.py 18KB
ple.py 12KB
sequence.py 12KB
inputs.py 9KB
onn.py 8KB
mmoe.py 8KB
core.py 7KB
din.py 7KB
utils.py 7KB
sharedbottom.py 6KB
xdeepfm.py 6KB
difm.py 5KB
dcnmix.py 5KB
fibinet.py 5KB
dcn.py 5KB
autoint.py 5KB
esmm.py 5KB
conf.py 5KB
utils_mtl.py 5KB
pnn.py 5KB
ccpm.py 5KB
ifm.py 4KB
mlr.py 4KB
deepfm.py 4KB
nfm.py 4KB
DIEN_test.py 4KB
afn.py 4KB
wdl.py 4KB
callbacks.py 3KB
run_dien.py 3KB
afm.py 3KB
run_multitask_learning.py 3KB
activation.py 3KB
run_classification_criteo.py 3KB
run_multivalue_movielens.py 3KB
DIN_test.py 2KB
run_din.py 2KB
utils.py 2KB
setup.py 2KB
run_regression_movielens.py 2KB
MLR_test.py 2KB
AFM_test.py 2KB
PLE_test.py 2KB
utils.py 2KB
共 168 条
- 1
- 2
资源评论
JustInToday
- 粉丝: 78
- 资源: 4
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 企业文化的三层结构.docx
- 企业文化概念的探讨.docx
- 企业文化就是一言一行.docx
- 企业文化与东西方文化传统.docx
- 基于java的网上教学辅助系统的设计与实现论文.doc
- Be Like a Goldfish, Don't Memorize! Mitigating Memorization in Generative LLMs
- 从《士兵突击》学管理之企业文化.doc
- 论企业文化和企业制度.doc
- 浅论人力资源管理与企业文化的关系.doc
- 王伟论企业文化.doc
- 传统文化与企业家精神.docx
- 陈亮:企业文化建设的核心是认同.docx
- 传承与发展——企业家与企业文化之辩证关系.docx
- 董明珠:用企业文化留住人.docx
- 李东生首谈企业文化 TCL管理方式正在变革.docx
- 蒋锡培:社会公益需要构建慈善的企业文化.docx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功