没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
Table of Contents
Mastering Python Data Analysis
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Why subscribe?
Free access for Packt account holders
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions
1. Tools of the Trade
Before you start
Using the notebook interface
Imports
An example using the Pandas library
Summary
2. Exploring Data
The General Social Survey
Obtaining the data
Reading the data
Univariate data
Histograms
Making things pretty
Characterization
Concept of statistical inference
Numeric summaries and boxplots
Relationships between variables – scatterplots
Summary
3. Learning About Models
Models and experiments
The cumulative distribution function
Working with distributions
The probability density function
Where do models come from?
Multivariate distributions
Summary
4. Regression
Introducing linear regression
Getting the dataset
Testing with linear regression
Multivariate regression
Adding economic indicators
Taking a step back
Logistic regression
Some notes
Summary
5. Clustering
Introduction to cluster finding
Starting out simple – John Snow on cholera
K-means clustering
Suicide rate versus GDP versus absolute latitude
Hierarchical clustering analysis
Reading in and reducing the data
Hierarchical cluster algorithm
Summary
6. Bayesian Methods
The Bayesian method
Credible versus confidence intervals
Bayes formula
Python packages
U.S. air travel safety record
Getting the NTSB database
Binning the data
Bayesian analysis of the data
Binning by month
Plotting coordinates
Cartopy
Mpl toolkits – basemap
Climate change - CO2 in the atmosphere
Getting the data
Creating and sampling the model
Summary
7. Supervised and Unsupervised Learning
Introduction to machine learning
Scikit-learn
Linear regression
Climate data
Checking with Bayesian analysis and OLS
Clustering
Seeds classification
Visualizing the data
Feature selection
Classifying the data
The SVC linear kernel
The SVC Radial Basis Function
The SVC polynomial
K-Nearest Neighbour
Random Forest
Choosing your classifier
Summary
8. Time Series Analysis
Introduction
Pandas and time series data
Indexing and slicing
Resampling, smoothing, and other estimates
Stationarity
Patterns and components
Decomposing components
Differencing
Time series models
Autoregressive – AR
Moving average – MA
Selecting p and q
Automatic function
The (Partial) AutoCorrelation Function
Autoregressive Integrated Moving Average – ARIMA
Summary
A. More on Jupyter Notebook and matplotlib Styles
Jupyter Notebook
Useful keyboard shortcuts
Command mode shortcuts
Edit mode shortcuts
Markdown cells
Notebook Python extensions
Installing the extensions
Codefolding
剩余281页未读,继续阅读
资源评论
yinkaisheng-nj
- 粉丝: 763
- 资源: 6231
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 离线json格式化html
- 训练强化学习代理来调整传统控制Matlab代码.rar
- 一种基于马尔可夫决策过程的强化学习的方法Matlab代码.rar
- 一种基于信息论工具估计源数量的源枚举算法matlab代码.rar
- 一种高效且有效的全参考分析方法,即感知误差对数(PEL),用于测量与主观评价一致的图像质量Matlab代码.rar
- 一种适用于非均匀介质中粘声波传播的高效短记忆算法,对应matlab代码 matlab代码.rar
- 一种用于模拟MicroGrid中能源竞价问题的强化学习代理Matlab代码.rar
- 移动无人机编队控制的MATLAB项目.rar
- 用于处理试验多通道时间序列的库 matlab代码.rar
- 用于分析2维光谱相关性,同步与异步光谱,模拟高斯,劳伦斯曲线分析。matlab代码.rar
- 用于分析无人机结构的matlab代码.rar
- 用于监督线性降维(SLDR)的MATLAB工具箱,包括LDA、HLDA、PLSDA、MMDA、HMMDA和SDA.rar
- 用于漂移扩散半导体建模的Matlab代码.rar
- 用于评估V形编队的拟议多无人机覆盖策略的性能Matlab代码.rar
- 用于在恒定重力下使用自适应ZEM-ZEV操纵航天器的深度强化学习(DRL)Matlab代码.rar
- 用于四旋翼无人机的地面站监控程序,MATLAB源码,可直接运行.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功