# PEL (Perceptual Error Logarithm)
An efficient and effective full-reference perceptual analytical method, namely Perceptual Error Logarithm (PEL), to measure the image quality in consistent with subjective evaluations.
- Perceptual Error Logarithm (PEL) Method (Index) - Version 1.0
- Copyright(c) 2024 Sergio Augusto Coelho Bezerra
- All Rights Reserved.
- e-mails: sergio.bezerra@ifam.edu.br or scoelhobezerra@gmail.com
- Data: September/2024, Manaus, Amazonas, Brazil.
The author is with Institute of Computing of the Federal University of Amazonas (ICOMP/UFAM), Federal University of Technology - Paraná (CPGEI/UTFPR), and Federal Institute of Education, Science and
Technology of Amazonas (IFAM).
Permission is granted free of charge to use, modify, or copy this software and its documentation for educational and research purposes only. This program code may not be used, rewritten or adapted as part of a
commercial product, either software or hardware, without first obtaining permission from the authors. The authors provide no representation as to the suitability of this code for any purpose.
This is an implementation of the full-reference method for calculating the perceptual quality assessment index between two images. Please refer
to the following paper:
- Sergio A. C. Bezerra, Sergio A. C. Bezerra Júnior, José L. de S. Pio, and Keiko V. O. Fonseca. "Perceptual Error Logarithm: an efficient and effective analytical method for full-reference image quality assessment"
submitted to IEEE Access, Sep. 2024.
If you find any errors or would like to make any suggestions, then please send them to the email sergio.bezerra@ifam.edu.br (or scoelhobezerra@gmail.com)
How to use PEL method?
### Input :
(1) refImg: reference image
(2) testImg: test image
### Output:
(1) score: output index. PEL value range [0,5], where the smaller value indicates high quality.
Example with images of the LIVE dataset.
- refImg = imread('parrots.bmp');
- testImg = imread('img233.bmp');
- score = PEL(refImg, testImg);
## Databases
- The Databases folder contains the experiment configuration files, which have 3 columns: reference images, test images, and DMOS/MOS.
天天Matlab科研工作室
- 粉丝: 4w+
- 资源: 1万+
最新资源
- 2024年成本之外的角逐:各国制造业和供应链就绪度白皮书(英文版).pdf
- 2024年AI辅助编码:利用生成式AI增强软件开发研究报告(英文版).pdf
- 2024年生成式AI对生产力的提升作用研究报告:解锁竞争优势(英文版).pdf
- 2024年日本科技人才状况报告(英).pdf
- 2024年人工智能和数据集物料清单综合创建指南报告-使用 SPDX 3.0实施AI物料清单(AI BOM)(英文版).pdf
- 2024资金森林循环体系x概念白皮书.pdf
- 2024年智能炼金术:生成式人工智能如何彻底变革现代企业中的商业智能和分析白皮书(英文版).pdf
- 2024年第三季度全球风险投资报告.pdf
- 2024零碳园区创建指南.pdf
- 文化赋能,多元融合 东城范式引领消费升级-2024年北京市东城区消费零售观察报告.pdf
- 元器件选型规范-电阻选型
- LinkedIn领英:2024年领英赋能中国企业全球化报告.pdf
- 2024年安全有效性验证能力白皮书.pdf
- 2024年低空经济产业发展白皮书.pdf
- 骨髓瘤展望:2024年革新疗法或推动2030年全球骨髓瘤药物市场规模增至330亿美元.pdf
- 魔镜洞察:2024年海外市场白皮书.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈