基于EMD(经验模态分解)-KPCA(核主成分分析)-LSTM的光伏功率预测模型(完美复现)matlab代码

preview
共6个文件
pdf:6个
需积分: 0 6 下载量 81 浏览量 更新于2023-11-25 收藏 1.07MB RAR 举报
程序名称:基于EMD(经验模态分解)-KPCA(核主成分分析)-LSTM的光伏功率预测模型 实现平台:matlab 代码简介:提高光伏发电功率预测精度,对于保证电力系统的安全调度和稳定运行具有重要意义。提出一种经验模态分解 (EMD)、核主成分分析(KPCA)和长短期记忆神经网络(LSTM)相结合的光伏功率预测模型。充分考虑制约光伏输出功率的4种环 境因素,首先利用EMD将环境因素序列进行分解,得到数据信号在不同时间尺度上的变化情况,降低环境因素序列的非平稳 性;其次利用KPCA提取特征序列的关键影响因子,消除原始序列的相关性和冗余性,降低模型输入的维度;最终利用LSTM网络 对多变量特征序列进行动态时间建模,实现对光伏发电功率的预测。实验结果表明,该预测模型较传统光伏功率预测方法有更高的精确度。附带参考文献。本代码在原文献上进行了改进,采用KPCA代替PCA,进一步提升了预测精度。代码具有一定创新性,且模块化编写,可自由根据需要更改完善模型,如将EMD替换成VMD CEEMD CEEMDAN EEMD等分解算法,对LSTM进一步改善,替换为GRU,BILSTM等。代码注释详细,无