rank: 0 times: 0.0073757171630859375s
稀疏矩阵的ID为 1 且进程数为 1 时,程序所需要的执行时间为:0.007483005523681641 s
rank: 0 times: 0.012772798538208008s
rank: 1 times: 0.004088401794433594s
稀疏矩阵的ID为 1 且进程数为 2 时,程序所需要的执行时间为:0.012877941131591797 s
rank: 0 times: 0.003078460693359375s
rank: 2 times: 0.0022668838500976562s
rank: 1 times: 0.01003885269165039s
稀疏矩阵的ID为 1 且进程数为 4 时,程序所需要的执行时间为:0.01068258285522461 s
rank: 3 times: 0.010579347610473633s
rank: 1 times: 0.0021181106567382812s
rank: 2 times: 0.0017592906951904297s
rank: 3 times: 0.010358810424804688s
rank: 4 times: 0.0016832351684570312s
rank: 5 times: 0.010038137435913086s
rank: 0 times: 0.0033118724822998047s
稀疏矩阵的ID为 1 且进程数为 6 时,程序所需要的执行时间为:0.010479927062988281 s
rank: 2 times: 0.0012946128845214844s
rank: 6 times: 0.0014028549194335938s
rank: 7 times: 0.03387093544006348s
rank: 3 times: 0.018648147583007812s
rank: 5 times: 0.0020418167114257812s
rank: 4 times: 0.011793375015258789s
rank: 1 times: 0.0016591548919677734s
rank: 0 times: 0.019571304321289062s
稀疏矩阵的ID为 1 且进程数为 8 时,程序所需要的执行时间为:0.03399372100830078 s
rank: 8 times: 0.013786077499389648s
rank: 9 times: 0.00529170036315918s
rank: 6 times: 0.001192331314086914s
rank: 5 times: 0.026200056076049805s
rank: 2 times: 0.001268148422241211s
rank: 1 times: 0.032166481018066406s
rank: 4 times: 0.0020177364349365234s
rank: 3 times: 0.007750272750854492s
rank: 0 times: 0.0031440258026123047s
rank: 7 times: 0.022498130798339844s
稀疏矩阵的ID为 1 且进程数为 10 时,程序所需要的执行时间为:0.03229808807373047 s
rank: 1 times: 0.0016028881072998047s
rank: 11 times: 0.027764320373535156s
rank: 10 times: 0.0012638568878173828s
rank: 9 times: 0.0014564990997314453s
rank: 2 times: 0.011157035827636719s
rank: 7 times: 0.001554727554321289s
rank: 4 times: 0.012422561645507812s
rank: 5 times: 0.0017104148864746094s
rank: 6 times: 0.0351099967956543s
rank: 3 times: 0.0014719963073730469s
rank: 0 times: 0.03933382034301758s
rank: 8 times: 0.012933015823364258s
稀疏矩阵的ID为 1 且进程数为 12 时,程序所需要的执行时间为:0.03944683074951172 s
rank: 10 times: 0.002962827682495117s
rank: 11 times: 0.0015301704406738281s
rank: 2 times: 0.0010800361633300781s
rank: 3 times: 0.007143259048461914s
rank: 12 times: 0.0023496150970458984s
rank: 13 times: 0.03332352638244629s
rank: 8 times: 0.0010614395141601562s
rank: 15 times: 0.0014874935150146484s
rank: 14 times: 0.00506281852722168s
rank: 7 times: 0.02934861183166504s
rank: 0 times: 0.03456759452819824s
rank: 1 times: 0.001276254653930664s
rank: 6 times: 0.001119852066040039s
rank: 9 times: 0.0573573112487793s
rank: 4 times: 0.0011494159698486328s
rank: 5 times: 0.06279993057250977s
稀疏矩阵的ID为 1 且进程数为 16 时,程序所需要的执行时间为:0.0629265308380127 s
rank: 23 times: 0.059749603271484375s
rank: 22 times: 0.018462419509887695s
rank: 9 times: 0.002272367477416992s
rank: 14 times: 0.0013735294342041016s
rank: 5 times: 0.0013341903686523438s
rank: 18 times: 0.0009136199951171875s
rank: 1 times: 0.0012869834899902344s
rank: 10 times: 0.0007786750793457031s
rank: 19 times: 0.07116293907165527s
rank: 8 times: 0.012745380401611328s
rank: 7 times: 0.0015914440155029297s
rank: 12 times: 0.012814760208129883s
rank: 11 times: 0.0013790130615234375s
rank: 20 times: 0.058492422103881836s
rank: 17 times: 0.0686957836151123s
rank: 2 times: 0.039424896240234375s
rank: 21 times: 0.00167083740234375s
rank: 6 times: 0.0071680545806884766s
rank: 13 times: 0.0016987323760986328s
rank: 16 times: 0.0766451358795166s
rank: 15 times: 0.0013363361358642578s
rank: 4 times: 0.029705524444580078s
rank: 3 times: 0.0016956329345703125s
rank: 0 times: 0.010010004043579102s
稀疏矩阵的ID为 1 且进程数为 24 时,程序所需要的执行时间为:0.0767662525177002 s
rank: 2 times: 0.041586875915527344s
rank: 6 times: 0.0628361701965332s
rank: 4 times: 0.02263188362121582s
rank: 18 times: 0.03631186485290527s
rank: 22 times: 0.03093695640563965s
rank: 26 times: 0.023241758346557617s
rank: 28 times: 0.023578643798828125s
rank: 10 times: 0.010846614837646484s
rank: 24 times: 0.11775517463684082s
rank: 14 times: 0.009027242660522461s
rank: 1 times: 0.010202407836914062s
rank: 30 times: 0.010612010955810547s
rank: 5 times: 0.0597231388092041s
rank: 12 times: 0.029355525970458984s
rank: 9 times: 0.04599618911743164s
rank: 8 times: 0.15292930603027344s
rank: 7 times: 0.02300262451171875s
rank: 16 times: 0.04777812957763672s
rank: 3 times: 0.052326202392578125s
rank: 0 times: 0.054299354553222656s
rank: 15 times: 0.00170135498046875s
rank: 20 times: 0.009932994842529297s
rank: 19 times: 0.020801544189453125s
稀疏矩阵的ID为 1 且进程数为 32 时,程序所需要的执行时间为:0.15305781364440918 s
rank: 13 times: 0.005301475524902344s
rank: 25 times: 0.07453465461730957s
rank: 17 times: 0.005268573760986328s
rank: 29 times: 0.009820699691772461s
rank: 21 times: 0.0017490386962890625s
rank: 31 times: 0.06018972396850586s
rank: 11 times: 0.13104462623596191s
rank: 27 times: 0.12322807312011719s
rank: 23 times: 0.0037841796875s
rank: 1 times: 0.026718854904174805s
rank: 8 times: 0.04942893981933594s
rank: 3 times: 0.009228944778442383s
rank: 2 times: 0.06535482406616211s
rank: 13 times: 0.028000593185424805s
rank: 16 times: 0.2729175090789795s
rank: 27 times: 0.01163482666015625s
rank: 14 times: 0.05160188674926758s
rank: 45 times: 0.08203744888305664s
rank: 28 times: 0.040605783462524414s
rank: 5 times: 0.001680135726928711s
rank: 22 times: 0.11562442779541016s
rank: 9 times: 0.008428096771240234s
rank: 18 times: 0.0629570484161377s
rank: 31 times: 0.10581231117248535s
rank: 30 times: 0.05237460136413574s
rank: 23 times: 0.1068413257598877s
rank: 12 times: 0.06650876998901367s
rank: 15 times: 0.007907629013061523s
rank: 24 times: 0.04839825630187988s
rank: 21 times: 0.03032827377319336s
rank: 42 times: 0.04001307487487793s
rank: 47 times: 0.01791691780090332s
rank: 44 times: 0.0982978343963623s
rank: 29 times: 0.04719662666320801s
rank: 40 times: 0.04637336730957031s
rank: 37 times: 0.04373621940612793s
rank: 10 times: 0.06994867324829102s
rank: 33 times: 0.024619102478027344s
rank: 26 times: 0.1217799186706543s
rank: 35 times: 0.003721475601196289s
rank: 6 times: 0.046111106872558594s
rank: 17 times: 0.005479335784912109s
rank: 20 times: 0.0968773365020752s
rank: 19 times: 0.0026569366455078125s
rank: 4 times: 0.04109358787536621s
rank: 43 times: 0.02581167221069336s
rank: 0 times: 0.26866960525512695s
rank: 25 times: 0.1066889762878418s
rank: 46 times: 0.10047459602355957s
rank: 11 times: 0.0028188228607177734s
rank: 36 times: 0.06956624984741211s
rank: 41 times: 0.029118776321411133s
rank: 34 times: 0.1284499168395996s
rank: 39 times: 0.05299043655395508s
rank: 38 times: 0.0751340389251709s
rank: 7 times: 0.0015850067138671875s
rank: 32 times: 0.04574942588806152s
稀疏矩阵的ID为 1 且进程数为 48 时,程序所需要的执行时间为:0.27306032180786133 s
rank: 6 times: 0.1090238094329834s
rank: 29 times: 0.015626192092895508s
rank: 2 times: 0.06042814254760742s
rank: 1 times: 0.04595232009887695s
rank: 4 times: 0.19106841087341309s
rank: 9 times: 0.0036573410034179688s
rank: 18 times: 0.06198477745056152s
rank: 31 times: 0.10840296745300293s
rank: 52 times: 0.0892186164855957s
rank: 3 times: 0.05934023857116699s
rank: 22 times: 0.04903459548950195s
rank: 7 times: 0.0040645599365234375s
rank: 26 times: 0.10626769065856934s
rank: 19 times: 0.048305511474609375s
rank: 20 times: 0.09217238426208496s
rank: 27 times: 0.
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于机器学习的稀疏矩阵向量乘法 (SpMV) 运算中任务粒度的自动选择模型项目源码(毕业设计&期末大作业),该项目是个人毕设项目,答辩评审分达到98分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 基于机器学习的稀疏矩阵向量乘法 (SpMV) 运算中任务粒度的自动选择模型项目源码(毕业设计&期末大作业),该项目是个人毕设项目,答辩评审分达到98分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 基于机器学习的稀疏矩阵向量乘法 (SpMV) 运算中任务粒度的自动选择模型项目源码(毕业设计&期末大作业),该项目是
资源推荐
资源详情
资源评论
收起资源包目录
基于机器学习的稀疏矩阵向量乘法 (SpMV) 运算中任务粒度的自动选择模型项目源码(毕业设计&期末大作业) (2001个子文件)
.DS_Store 258KB
README.md 2KB
注意事项.md 867B
0-README.md 145B
README.md 55B
ML.py 4KB
many_matrix_dif_process.py 3KB
mpi-ml.py 3KB
obtain_process_min_time.py 2KB
obtian_matrix_features.py 2KB
one_matrix_dif_process.py 2KB
2-find_file.py 909B
data_integration.py 736B
3-decompression.py 656B
1_download_matrix.py 539B
0_obtain_matrix_information.py 439B
spmv_mpi.py 396B
outfile.py 364B
create_random.py 346B
submit_1.sh 3KB
submit_2.sh 3KB
log.txt 23.16MB
log_1.txt 11.6MB
log_2.txt 11.59MB
MISKnowledgeMap_Label.txt 213KB
MISKnowledgeMap_Authors.txt 102KB
MISKnowledgeMap_Source.txt 81KB
MISKnowledgeMap_Abstract_1775.txt 3KB
MISKnowledgeMap_Abstract_438.txt 3KB
MISKnowledgeMap_Abstract_1525.txt 3KB
MISKnowledgeMap_Abstract_392.txt 3KB
MISKnowledgeMap_Abstract_1434.txt 3KB
MISKnowledgeMap_Abstract_1112.txt 3KB
MISKnowledgeMap_Abstract_1745.txt 3KB
MISKnowledgeMap_Abstract_780.txt 3KB
MISKnowledgeMap_Abstract_1654.txt 2KB
MISKnowledgeMap_Abstract_679.txt 2KB
MISKnowledgeMap_Abstract_1881.txt 2KB
MISKnowledgeMap_Abstract_086.txt 2KB
MISKnowledgeMap_Abstract_042.txt 2KB
MISKnowledgeMap_Abstract_1963.txt 2KB
MISKnowledgeMap_Abstract_1342.txt 2KB
MISKnowledgeMap_Abstract_1858.txt 2KB
MISKnowledgeMap_Abstract_1230.txt 2KB
MISKnowledgeMap_Abstract_2136.txt 2KB
MISKnowledgeMap_Abstract_041.txt 2KB
MISKnowledgeMap_Abstract_147.txt 2KB
MISKnowledgeMap_Abstract_283.txt 2KB
MISKnowledgeMap_Abstract_288.txt 2KB
MISKnowledgeMap_Abstract_2244.txt 2KB
MISKnowledgeMap_Abstract_1665.txt 2KB
MISKnowledgeMap_Abstract_1306.txt 2KB
MISKnowledgeMap_Abstract_273.txt 2KB
MISKnowledgeMap_Abstract_201.txt 2KB
MISKnowledgeMap_Abstract_793.txt 2KB
MISKnowledgeMap_Abstract_016.txt 2KB
MISKnowledgeMap_Abstract_1823.txt 2KB
MISKnowledgeMap_Abstract_2121.txt 2KB
MISKnowledgeMap_Abstract_2288.txt 2KB
MISKnowledgeMap_Abstract_1219.txt 2KB
MISKnowledgeMap_Abstract_826.txt 2KB
MISKnowledgeMap_Abstract_015.txt 2KB
MISKnowledgeMap_Abstract_2123.txt 2KB
MISKnowledgeMap_Abstract_294.txt 2KB
MISKnowledgeMap_Abstract_177.txt 2KB
MISKnowledgeMap_Abstract_727.txt 2KB
MISKnowledgeMap_Abstract_1526.txt 2KB
MISKnowledgeMap_Abstract_729.txt 2KB
MISKnowledgeMap_Abstract_1874.txt 2KB
MISKnowledgeMap_Abstract_955.txt 2KB
MISKnowledgeMap_Abstract_2239.txt 2KB
MISKnowledgeMap_Abstract_009.txt 2KB
MISKnowledgeMap_Abstract_2315.txt 2KB
MISKnowledgeMap_Abstract_476.txt 2KB
MISKnowledgeMap_Abstract_1369.txt 2KB
MISKnowledgeMap_Abstract_924.txt 2KB
MISKnowledgeMap_Abstract_2380.txt 2KB
MISKnowledgeMap_Abstract_2132.txt 2KB
MISKnowledgeMap_Abstract_064.txt 2KB
MISKnowledgeMap_Abstract_1272.txt 2KB
MISKnowledgeMap_Abstract_1241.txt 2KB
MISKnowledgeMap_Abstract_1053.txt 2KB
MISKnowledgeMap_Abstract_214.txt 2KB
MISKnowledgeMap_Abstract_702.txt 2KB
MISKnowledgeMap_Abstract_1905.txt 2KB
MISKnowledgeMap_Abstract_552.txt 2KB
MISKnowledgeMap_Abstract_052.txt 2KB
MISKnowledgeMap_Abstract_1378.txt 2KB
MISKnowledgeMap_Abstract_027.txt 2KB
MISKnowledgeMap_Abstract_689.txt 2KB
MISKnowledgeMap_Abstract_466.txt 2KB
MISKnowledgeMap_Abstract_229.txt 2KB
MISKnowledgeMap_Abstract_1178.txt 2KB
MISKnowledgeMap_Abstract_1064.txt 2KB
MISKnowledgeMap_Abstract_158.txt 2KB
MISKnowledgeMap_Abstract_757.txt 2KB
MISKnowledgeMap_Abstract_649.txt 2KB
MISKnowledgeMap_Abstract_1511.txt 2KB
MISKnowledgeMap_Abstract_1608.txt 2KB
MISKnowledgeMap_Abstract_169.txt 2KB
共 2001 条
- 1
- 2
- 3
- 4
- 5
- 6
- 21
资源评论
yava_free
- 粉丝: 5285
- 资源: 2068
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 使用 NLMS 算法的自适应通道均衡Matlab代码.rar
- 使用 MRC、EGC 和 SC 进行 BPSK 传输的瑞利衰落信道中 SIMO 的接收分集Matlab代码.rar
- 使用64-QAM调制的OFDM实现Matlab代码.rar
- 使用64-QAM调制的OFDM实现.rar
- 使用16-QAM调制的OFDM实现Matlab代码.rar
- 使用BPSK调制的波束形成MATLAB代码.rar
- 使用AWGN信道的不同M-ary QAM误码率比较的MATLAB代码.rar
- 使用BPSK模拟了一个UWB系统。接收器是一个相关接收器,带有LPF积分器和用于阈值选择的比较器matlab代码.rar
- 使用MATLAB函数进行幅度调制和解调.rar
- 使用Gerschgorin半径对源数进行盲检Matlab代码.rar
- 使用IBM CPLEX求解器在IEEE 33节点辐射式配电系统中的潮流计算Matlab代码.rar
- 使用M-PSK(用户输入)在OFDM中的AWGN图像传输Matlab代码.rar
- 使用MATLAB实现二进制PSK调制和解调,并考虑固定信息.rar
- 使用MATLAB输入的QPSK示例.rar
- 使用PGZ算法解码里德-所罗门码matlab代码.rar
- 使用M-QAM调制的文件在雷诺信道中的波束形成Matlab代码.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功