# Digital-Vehicle-Competition
2023年创新组赛题一:基于数据驱动的动力电池健康状态评估与剩余寿命预测
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
Python基于深度学习实现动力电池健康状态评估与剩余寿命预测源代码+全部设计资料(高分项目)本次使用的模型为五个机器学习模型: SVR, ElasticNet, KernelRidge, XGBRegressor, GradientBoostingRegressor 以及一个深度学习模型的平均融合模型.论文标题: Data-driven prediction of battery cycle life before capacity degradation,复现所用到的评价指标为MAPE, 即 mean absolute percentage error. 在 Primary test 数据集(已移除Cycle Life 为148的异常样本)上, MAPE=7.14%, 在 Secondary test 数据集上, MAPE=7.75%, 综合MAPE=7.45%。 数据集和复现精度 给出本repo中用到的数据集的基本信息,例如数据集大小与数据集格式。格式如下: 数据集大小: batch1:2017-05-12_batchdata_updated_struct_errorcorr
资源推荐
资源详情
资源评论
收起资源包目录
Python基于深度学习实现动力电池健康状态评估与剩余寿命预测源代码+全部设计资料(高分项目) (1899个子文件)
LFPHC7PE5K1B01524cell_Features.csv 32.67MB
LFPHC7PE1K1B03139cell_Features.csv 31.06MB
LFPHC7PE0K1A07972cell_Features.csv 29.72MB
LFPHC7PE2K1B02940cell_Features.csv 19.52MB
LFPHC7PEXK1B05312cell_Features.csv 15.98MB
LFPHC7PE0K1A07972_cell_Features.csv 12.6MB
LFPHC7PE1K1B03139_cell_Features2.csv 11.41MB
LFPHC7PE1K1B03139_cell_Features.csv 11.3MB
LFPHC7PE0K1A07972_cell_Features2.csv 11.09MB
LFPHC7PE5K1B01524_cell_Features2.csv 9.58MB
LFPHC7PE5K1B01524_cell_Features.csv 9.31MB
LFPHC7PE0K1A07972_cell_Features1.csv 7.54MB
LFPHC7PE5K1B01524temperature_Features.csv 7.08MB
LFPHC7PE2K1B02940_cell_Features.csv 6.88MB
LFPHC7PE2K1B02940_cell_Features2.csv 6.86MB
LFPHC7PE1K1B03139temperature_Features.csv 6.7MB
LFPHC7PE8K1B05048cell_Features.csv 6.59MB
LFPHC7PE0K1A07972temperature_Features.csv 6.56MB
LFPHC7PE1K1B03139_cell_Features2.csv 6.5MB
LFPHC7PE0K1A07972_cell_Features2.csv 6.35MB
LFPHC7PE5K1B01524_cell_Features2.csv 5.44MB
LFPHC7PEXK1B05312_cell_Features2.csv 4.9MB
LFPHC7PEXK1B05312_cell_Features.csv 4.82MB
LFPHC7PE2K1B02940temperature_Features.csv 4.24MB
LFPHC7PE2K1B02940_cell_Features2.csv 3.94MB
LFPHC7PEXK1B05312temperature_Features.csv 3.49MB
LFPHC7PE1K1B03139_temperature_Features2.csv 2.89MB
LFPHC7PE0K1A07972_temperature_Features2.csv 2.85MB
LFPHC7PEXK1B05312_cell_Features2.csv 2.79MB
LFPHC7PE8K1A09808cell_Features.csv 2.73MB
LFPHC7PE5K1B01524_temperature_Features2.csv 2.42MB
LFPHC7PE1K1B03139_temperature_Features.csv 2.31MB
LFPHC7PE8K1B05048_cell_Features.csv 2.29MB
LFPHC7PE8K1B05048_cell_Features2.csv 2.29MB
LFPHC7PE0K1A07972_temperature_Features.csv 2.25MB
LFPHC7PE1K1B03139_temperature_Features2.csv 2.14MB
LFPHC7PE0K1A07972_temperature_Features2.csv 2.11MB
LFPHC7PE1K1B12505cell_Features.csv 2.05MB
LFPHC7PE5K1B01524_temperature_Features.csv 1.91MB
LFPHC7PE5K1B01524_temperature_Features2.csv 1.8MB
LFPHC7PE8K1A09808_cell_Features2.csv 1.78MB
LFPHC7PE2K1B02940_temperature_Features2.csv 1.77MB
LFPHC7PE1K1B12505_cell_Features2.csv 1.75MB
LFPHC7PE7K1B00195cell_Features.csv 1.56MB
LFPHC7PE8K1B05048temperature_Features.csv 1.43MB
LFPHC7PE2K1B02940_temperature_Features.csv 1.41MB
LFPHC7PE1K1B12505_cell_Features.csv 1.32MB
LFPHC7PE8K1A09808_cell_Features.csv 1.32MB
LFPHC7PE2K1B02940_temperature_Features2.csv 1.31MB
LFPHC7PE8K1B05048_cell_Features2.csv 1.31MB
LFPHC7PE0K1A07972_temperature_Features1.csv 1.26MB
LFPHC7PEXK1B05312_temperature_Features2.csv 1.25MB
LFPHC7PE8K1A09808_cell_Features2.csv 1.01MB
LFPHC7PE1K1B12505_cell_Features2.csv 1.01MB
LFPHC7PEXK1B05312_temperature_Features.csv 1019KB
LFPHC7PEXK1B05312_temperature_Features2.csv 950KB
LFPHC7PE9K1B01686cell_Features.csv 874KB
LFPHC7PE7K1B00195_cell_Features2.csv 868KB
LFPHC7PE9K1B01686_cell_Features2.csv 667KB
LFPHC7PE7K1B00195_cell_Features.csv 623KB
LFPHC7PE8K1B05048_temperature_Features2.csv 593KB
LFPHC7PE8K1A09808temperature_Features.csv 534KB
LFPHC7PE7K1B00195_cell_Features2.csv 490KB
LFPHC7PE9K1B01686_cell_Features.csv 483KB
LFPHC7PE8K1B05048_temperature_Features.csv 480KB
LFPHC7PE1K1B12505temperature_Features.csv 463KB
LFPHC7PE8K1B05048_temperature_Features2.csv 438KB
LFPHC7PE1K1B12505_temperature_Features2.csv 422KB
LFPHC7PE9K1B01686_cell_Features2.csv 382KB
LFPHC7PE8K1A09808_temperature_Features2.csv 354KB
LFPHC7PE1K1B12505_temperature_Features2.csv 314KB
LFPHC7PE1K1B12505_temperature_Features.csv 278KB
LFPHC7PE7K1B00195temperature_Features.csv 277KB
LFPHC7PE8K1A09808_temperature_Features.csv 275KB
LFPHC7PE8K1A09808_temperature_Features2.csv 271KB
DeclineEstimationModel_loss.csv 181KB
LFPHC7PE7K1B00195_temperature_Features2.csv 176KB
CapacityEstimationModel_loss.csv 163KB
LFPHC7PE9K1B01686temperature_Features.csv 161KB
LFPHC7PE9K1B01686_temperature_Features2.csv 144KB
mileageDistribution.csv 139KB
CapacityEstimationModel_loss.csv 136KB
LFPHC7PE7K1B00195_temperature_Features2.csv 134KB
LFPHC7PE0K1A07972_decline.csv 130KB
Capacity_short_forecast.csv 129KB
Capacity_long_forecast.csv 129KB
LFPHC7PE7K1B00195_temperature_Features.csv 126KB
LFPHC7PE0K1A07972_decline.csv 122KB
LFPHC7PE1K1B03139_decline.csv 122KB
LFPHC7PE9K1B01686_temperature_Features2.csv 109KB
CapacityEstimationModel_loss.csv 101KB
LFPHC7PE9K1B01686_temperature_Features.csv 95KB
predict.csv 91KB
predict.csv 91KB
CapacityEstimationModel_loss.csv 74KB
CapacityEstimationModel_loss.csv 73KB
LFPHC7PE5K1B01524_redefineCapacity.csv 62KB
LFPHC7PE1K1B03139_Capacity_moveAvg.csv 60KB
LFPHC7PE0K1A07972_Capacity_moveAvg.csv 58KB
LFPHC7PE1K1B03139_redefineCapacity.csv 57KB
共 1899 条
- 1
- 2
- 3
- 4
- 5
- 6
- 19
资源评论
yava_free
- 粉丝: 3732
- 资源: 1474
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 适用于 Android、Java 和 Kotlin Multiplatform 的现代 I,O 库 .zip
- 高通TWS蓝牙规格书,做HIFI级别的耳机用
- Qt读写Usb设备的数据
- 这个存储库适合初学者从 Scratch 开始学习 JavaScript.zip
- AUTOSAR 4.4.0版本Rte模块标准文档
- 25考研冲刺快速复习经验.pptx
- MATLAB使用教程-初步入门大全
- 该存储库旨在为 Web 上的语言提供新信息 .zip
- 考研冲刺的实用经验与技巧.pptx
- Nvidia GeForce GT 1030-GeForce Studio For Win10&Win11(Win10&Win11 GeForce GT 1030显卡驱动)
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功