# Digital-Vehicle-Competition
2023年创新组赛题一:基于数据驱动的动力电池健康状态评估与剩余寿命预测
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
Python基于深度学习实现动力电池健康状态评估与剩余寿命预测源代码+全部设计资料(高分项目)本次使用的模型为五个机器学习模型: SVR, ElasticNet, KernelRidge, XGBRegressor, GradientBoostingRegressor 以及一个深度学习模型的平均融合模型.论文标题: Data-driven prediction of battery cycle life before capacity degradation,复现所用到的评价指标为MAPE, 即 mean absolute percentage error. 在 Primary test 数据集(已移除Cycle Life 为148的异常样本)上, MAPE=7.14%, 在 Secondary test 数据集上, MAPE=7.75%, 综合MAPE=7.45%。 数据集和复现精度 给出本repo中用到的数据集的基本信息,例如数据集大小与数据集格式。格式如下: 数据集大小: batch1:2017-05-12_batchdata_updated_struct_errorcorr
资源推荐
资源详情
资源评论
收起资源包目录
Python基于深度学习实现动力电池健康状态评估与剩余寿命预测源代码+全部设计资料(高分项目) (1899个子文件)
LFPHC7PE5K1B01524cell_Features.csv 32.67MB
LFPHC7PE1K1B03139cell_Features.csv 31.06MB
LFPHC7PE0K1A07972cell_Features.csv 29.72MB
LFPHC7PE2K1B02940cell_Features.csv 19.52MB
LFPHC7PEXK1B05312cell_Features.csv 15.98MB
LFPHC7PE0K1A07972_cell_Features.csv 12.6MB
LFPHC7PE1K1B03139_cell_Features2.csv 11.41MB
LFPHC7PE1K1B03139_cell_Features.csv 11.3MB
LFPHC7PE0K1A07972_cell_Features2.csv 11.09MB
LFPHC7PE5K1B01524_cell_Features2.csv 9.58MB
LFPHC7PE5K1B01524_cell_Features.csv 9.31MB
LFPHC7PE0K1A07972_cell_Features1.csv 7.54MB
LFPHC7PE5K1B01524temperature_Features.csv 7.08MB
LFPHC7PE2K1B02940_cell_Features.csv 6.88MB
LFPHC7PE2K1B02940_cell_Features2.csv 6.86MB
LFPHC7PE1K1B03139temperature_Features.csv 6.7MB
LFPHC7PE8K1B05048cell_Features.csv 6.59MB
LFPHC7PE0K1A07972temperature_Features.csv 6.56MB
LFPHC7PE1K1B03139_cell_Features2.csv 6.5MB
LFPHC7PE0K1A07972_cell_Features2.csv 6.35MB
LFPHC7PE5K1B01524_cell_Features2.csv 5.44MB
LFPHC7PEXK1B05312_cell_Features2.csv 4.9MB
LFPHC7PEXK1B05312_cell_Features.csv 4.82MB
LFPHC7PE2K1B02940temperature_Features.csv 4.24MB
LFPHC7PE2K1B02940_cell_Features2.csv 3.94MB
LFPHC7PEXK1B05312temperature_Features.csv 3.49MB
LFPHC7PE1K1B03139_temperature_Features2.csv 2.89MB
LFPHC7PE0K1A07972_temperature_Features2.csv 2.85MB
LFPHC7PEXK1B05312_cell_Features2.csv 2.79MB
LFPHC7PE8K1A09808cell_Features.csv 2.73MB
LFPHC7PE5K1B01524_temperature_Features2.csv 2.42MB
LFPHC7PE1K1B03139_temperature_Features.csv 2.31MB
LFPHC7PE8K1B05048_cell_Features.csv 2.29MB
LFPHC7PE8K1B05048_cell_Features2.csv 2.29MB
LFPHC7PE0K1A07972_temperature_Features.csv 2.25MB
LFPHC7PE1K1B03139_temperature_Features2.csv 2.14MB
LFPHC7PE0K1A07972_temperature_Features2.csv 2.11MB
LFPHC7PE1K1B12505cell_Features.csv 2.05MB
LFPHC7PE5K1B01524_temperature_Features.csv 1.91MB
LFPHC7PE5K1B01524_temperature_Features2.csv 1.8MB
LFPHC7PE8K1A09808_cell_Features2.csv 1.78MB
LFPHC7PE2K1B02940_temperature_Features2.csv 1.77MB
LFPHC7PE1K1B12505_cell_Features2.csv 1.75MB
LFPHC7PE7K1B00195cell_Features.csv 1.56MB
LFPHC7PE8K1B05048temperature_Features.csv 1.43MB
LFPHC7PE2K1B02940_temperature_Features.csv 1.41MB
LFPHC7PE1K1B12505_cell_Features.csv 1.32MB
LFPHC7PE8K1A09808_cell_Features.csv 1.32MB
LFPHC7PE2K1B02940_temperature_Features2.csv 1.31MB
LFPHC7PE8K1B05048_cell_Features2.csv 1.31MB
LFPHC7PE0K1A07972_temperature_Features1.csv 1.26MB
LFPHC7PEXK1B05312_temperature_Features2.csv 1.25MB
LFPHC7PE8K1A09808_cell_Features2.csv 1.01MB
LFPHC7PE1K1B12505_cell_Features2.csv 1.01MB
LFPHC7PEXK1B05312_temperature_Features.csv 1019KB
LFPHC7PEXK1B05312_temperature_Features2.csv 950KB
LFPHC7PE9K1B01686cell_Features.csv 874KB
LFPHC7PE7K1B00195_cell_Features2.csv 868KB
LFPHC7PE9K1B01686_cell_Features2.csv 667KB
LFPHC7PE7K1B00195_cell_Features.csv 623KB
LFPHC7PE8K1B05048_temperature_Features2.csv 593KB
LFPHC7PE8K1A09808temperature_Features.csv 534KB
LFPHC7PE7K1B00195_cell_Features2.csv 490KB
LFPHC7PE9K1B01686_cell_Features.csv 483KB
LFPHC7PE8K1B05048_temperature_Features.csv 480KB
LFPHC7PE1K1B12505temperature_Features.csv 463KB
LFPHC7PE8K1B05048_temperature_Features2.csv 438KB
LFPHC7PE1K1B12505_temperature_Features2.csv 422KB
LFPHC7PE9K1B01686_cell_Features2.csv 382KB
LFPHC7PE8K1A09808_temperature_Features2.csv 354KB
LFPHC7PE1K1B12505_temperature_Features2.csv 314KB
LFPHC7PE1K1B12505_temperature_Features.csv 278KB
LFPHC7PE7K1B00195temperature_Features.csv 277KB
LFPHC7PE8K1A09808_temperature_Features.csv 275KB
LFPHC7PE8K1A09808_temperature_Features2.csv 271KB
DeclineEstimationModel_loss.csv 181KB
LFPHC7PE7K1B00195_temperature_Features2.csv 176KB
CapacityEstimationModel_loss.csv 163KB
LFPHC7PE9K1B01686temperature_Features.csv 161KB
LFPHC7PE9K1B01686_temperature_Features2.csv 144KB
mileageDistribution.csv 139KB
CapacityEstimationModel_loss.csv 136KB
LFPHC7PE7K1B00195_temperature_Features2.csv 134KB
LFPHC7PE0K1A07972_decline.csv 130KB
Capacity_short_forecast.csv 129KB
Capacity_long_forecast.csv 129KB
LFPHC7PE7K1B00195_temperature_Features.csv 126KB
LFPHC7PE0K1A07972_decline.csv 122KB
LFPHC7PE1K1B03139_decline.csv 122KB
LFPHC7PE9K1B01686_temperature_Features2.csv 109KB
CapacityEstimationModel_loss.csv 101KB
LFPHC7PE9K1B01686_temperature_Features.csv 95KB
predict.csv 91KB
predict.csv 91KB
CapacityEstimationModel_loss.csv 74KB
CapacityEstimationModel_loss.csv 73KB
LFPHC7PE5K1B01524_redefineCapacity.csv 62KB
LFPHC7PE1K1B03139_Capacity_moveAvg.csv 60KB
LFPHC7PE0K1A07972_Capacity_moveAvg.csv 58KB
LFPHC7PE1K1B03139_redefineCapacity.csv 57KB
共 1899 条
- 1
- 2
- 3
- 4
- 5
- 6
- 19
资源评论
yava_free
- 粉丝: 5237
- 资源: 2017
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- html新年快乐3d烟花代码利用HTML、CSS和JavaScript构建新年3D烟花动画效果演示
- HTML与JavaScript实现的新年倒计时和烟花特效网页制作教程
- 元旦烟花html前端开发中实现动态元旦烟花特效-HTML、CSS与JavaScript协同
- html新年快乐3d烟花代码使用HTML、CSS和JavaScript实现实时动态新年3D烟花特效
- 元旦烟花html,HTML/CSS/JavaScript实现元旦烟花特效页面
- HTML网页实现新年倒计时与烟花绽放特效展示前端动画技术的应用
- nocabbb安装部署镜像使用
- Python金融分析:用现有股票代码与年度数据分析并绘制股价走势和月均收盘价柱状图
- JAVA多个源码小项目
- 自学计算机专业的学习指南
- 圣诞节与技术:在忙碌中不忘温暖与创新
- MATLAB简介与应用
- python爬虫源码,可用于学习练手
- C# winform图书管理系统
- 锐捷端口镜像.docx
- MATLAB 实现基于DBO(蜣螂优化算法)进行时间序列预测模型的项目详细实例(含完整的程序,GUI设计和代码详解)
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功