===========
NumPy C-API
===========
::
unsigned int
PyArray_GetNDArrayCVersion(void )
Included at the very first so not auto-grabbed and thus not labeled.
::
int
PyArray_SetNumericOps(PyObject *dict)
Set internal structure with number functions that all arrays will use
::
PyObject *
PyArray_GetNumericOps(void )
Get dictionary showing number functions that all arrays will use
::
int
PyArray_INCREF(PyArrayObject *mp)
For object arrays, increment all internal references.
::
int
PyArray_XDECREF(PyArrayObject *mp)
Decrement all internal references for object arrays.
(or arrays with object fields)
::
void
PyArray_SetStringFunction(PyObject *op, int repr)
Set the array print function to be a Python function.
::
PyArray_Descr *
PyArray_DescrFromType(int type)
Get the PyArray_Descr structure for a type.
::
PyObject *
PyArray_TypeObjectFromType(int type)
Get a typeobject from a type-number -- can return NULL.
New reference
::
char *
PyArray_Zero(PyArrayObject *arr)
Get pointer to zero of correct type for array.
::
char *
PyArray_One(PyArrayObject *arr)
Get pointer to one of correct type for array
::
PyObject *
PyArray_CastToType(PyArrayObject *arr, PyArray_Descr *dtype, int
is_f_order)
For backward compatibility
Cast an array using typecode structure.
steals reference to dtype --- cannot be NULL
This function always makes a copy of arr, even if the dtype
doesn't change.
::
int
PyArray_CastTo(PyArrayObject *out, PyArrayObject *mp)
Cast to an already created array.
::
int
PyArray_CastAnyTo(PyArrayObject *out, PyArrayObject *mp)
Cast to an already created array. Arrays don't have to be "broadcastable"
Only requirement is they have the same number of elements.
::
int
PyArray_CanCastSafely(int fromtype, int totype)
Check the type coercion rules.
::
npy_bool
PyArray_CanCastTo(PyArray_Descr *from, PyArray_Descr *to)
leaves reference count alone --- cannot be NULL
PyArray_CanCastTypeTo is equivalent to this, but adds a 'casting'
parameter.
::
int
PyArray_ObjectType(PyObject *op, int minimum_type)
Return the typecode of the array a Python object would be converted to
Returns the type number the result should have, or NPY_NOTYPE on error.
::
PyArray_Descr *
PyArray_DescrFromObject(PyObject *op, PyArray_Descr *mintype)
new reference -- accepts NULL for mintype
::
PyArrayObject **
PyArray_ConvertToCommonType(PyObject *op, int *retn)
This function is only used in one place within NumPy and should
generally be avoided. It is provided mainly for backward compatibility.
The user of the function has to free the returned array.
::
PyArray_Descr *
PyArray_DescrFromScalar(PyObject *sc)
Return descr object from array scalar.
New reference
::
PyArray_Descr *
PyArray_DescrFromTypeObject(PyObject *type)
::
npy_intp
PyArray_Size(PyObject *op)
Compute the size of an array (in number of items)
::
PyObject *
PyArray_Scalar(void *data, PyArray_Descr *descr, PyObject *base)
Get scalar-equivalent to a region of memory described by a descriptor.
::
PyObject *
PyArray_FromScalar(PyObject *scalar, PyArray_Descr *outcode)
Get 0-dim array from scalar
0-dim array from array-scalar object
always contains a copy of the data
unless outcode is NULL, it is of void type and the referrer does
not own it either.
steals reference to outcode
::
void
PyArray_ScalarAsCtype(PyObject *scalar, void *ctypeptr)
Convert to c-type
no error checking is performed -- ctypeptr must be same type as scalar
in case of flexible type, the data is not copied
into ctypeptr which is expected to be a pointer to pointer
::
int
PyArray_CastScalarToCtype(PyObject *scalar, void
*ctypeptr, PyArray_Descr *outcode)
Cast Scalar to c-type
The output buffer must be large-enough to receive the value
Even for flexible types which is different from ScalarAsCtype
where only a reference for flexible types is returned
This may not work right on narrow builds for NumPy unicode scalars.
::
int
PyArray_CastScalarDirect(PyObject *scalar, PyArray_Descr
*indescr, void *ctypeptr, int outtype)
Cast Scalar to c-type
::
PyObject *
PyArray_ScalarFromObject(PyObject *object)
Get an Array Scalar From a Python Object
Returns NULL if unsuccessful but error is only set if another error occurred.
Currently only Numeric-like object supported.
::
PyArray_VectorUnaryFunc *
PyArray_GetCastFunc(PyArray_Descr *descr, int type_num)
Get a cast function to cast from the input descriptor to the
output type_number (must be a registered data-type).
Returns NULL if un-successful.
::
PyObject *
PyArray_FromDims(int NPY_UNUSED(nd) , int *NPY_UNUSED(d) , int
NPY_UNUSED(type) )
Deprecated, use PyArray_SimpleNew instead.
::
PyObject *
PyArray_FromDimsAndDataAndDescr(int NPY_UNUSED(nd) , int
*NPY_UNUSED(d) , PyArray_Descr
*descr, char *NPY_UNUSED(data) )
Deprecated, use PyArray_NewFromDescr instead.
::
PyObject *
PyArray_FromAny(PyObject *op, PyArray_Descr *newtype, int
min_depth, int max_depth, int flags, PyObject
*context)
Does not check for NPY_ARRAY_ENSURECOPY and NPY_ARRAY_NOTSWAPPED in flags
Steals a reference to newtype --- which can be NULL
::
PyObject *
PyArray_EnsureArray(PyObject *op)
This is a quick wrapper around
PyArray_FromAny(op, NULL, 0, 0, NPY_ARRAY_ENSUREARRAY, NULL)
that special cases Arrays and PyArray_Scalars up front
It *steals a reference* to the object
It also guarantees that the result is PyArray_Type
Because it decrefs op if any conversion needs to take place
so it can be used like PyArray_EnsureArray(some_function(...))
::
PyObject *
PyArray_EnsureAnyArray(PyObject *op)
::
PyObject *
PyArray_FromFile(FILE *fp, PyArray_Descr *dtype, npy_intp num, char
*sep)
Given a ``FILE *`` pointer ``fp``, and a ``PyArray_Descr``, return an
array corresponding to the data encoded in that file.
The reference to `dtype` is stolen (it is possible that the passed in
dtype is not held on to).
The number of elements to read is given as ``num``; if it is < 0, then
then as many as possible are read.
If ``sep`` is NULL or empty, then binary data is assumed, else
text data, with ``sep`` as the separator between elements. Whitespace in
the separator matches any length of whitespace in the text, and a match
for whitespace around the separator is added.
For memory-mapped files, use the buffer interface. No more data than
necessary is read by this routine.
::
PyObject *
PyArray_FromString(char *data, npy_intp slen, PyArray_Descr
*dtype, npy_intp num, char *sep)
Given a pointer to a string ``data``, a string length ``slen``, and
a ``PyArray_Descr``, return an array corresponding to the data
encoded in that string.
If the dtype is NULL, the default array type is used (double).
If non-null, the reference is stolen.
If ``slen`` is < 0, then the end of string is used for text data.
It is an error for ``slen`` to be < 0 for binary data (since embedded NULLs
would be the norm).
The number of elements to read is given as ``num``; if it is < 0, then
then as many as possible are read.
If ``sep`` is NULL or empty, then binary data is assumed, else
text data, with ``sep`` as the separator between elements. Whitespace in
the separator matches any length of whitespace in the text, and a match
for whitespace around the separator is added.
::
PyObject *
没有合适的资源?快使用搜索试试~ 我知道了~
膳食知识图谱推荐系统+数据集+知识图谱
共2000个文件
py:1898个
c:40个
txt:30个
需积分: 5 3 下载量 121 浏览量
2024-11-12
16:54:56
上传
评论 1
收藏 44.82MB ZIP 举报
温馨提示
膳食知识图谱推荐系统+数据集+知识图谱
资源推荐
资源详情
资源评论
收起资源包目录
膳食知识图谱推荐系统+数据集+知识图谱 (2000个子文件)
fortranobject.c 37KB
wrapmodule.c 7KB
_speedups.c 7KB
extra_avx512f_reduce.c 2KB
cpu_avx512_knm.c 1KB
cpu_popcnt.c 1KB
cpu_avx512_skx.c 1KB
cpu_avx512_icl.c 1KB
cpu_avx512_knl.c 981B
extra_vsx_asm.c 981B
cpu_avx512_cnl.c 972B
cpu_f16c.c 890B
cpu_avx512_clx.c 864B
cpu_fma3.c 839B
cpu_avx.c 799B
cpu_avx512cd.c 779B
cpu_avx512f.c 775B
cpu_avx2.c 769B
cpu_asimd.c 729B
cpu_ssse3.c 725B
cpu_sse2.c 717B
cpu_sse42.c 712B
cpu_sse3.c 709B
cpu_sse.c 706B
cpu_sse41.c 695B
extra_avx512bw_mask.c 654B
extra_avx512dq_mask.c 520B
cpu_neon_vfpv4.c 512B
cpu_vsx.c 499B
cpu_asimdfhm.c 448B
cpu_asimddp.c 395B
cpu_neon.c 387B
cpu_asimdhp.c 343B
cpu_fma4.c 314B
cpu_vsx2.c 276B
cpu_vsx3.c 263B
cpu_neon_fp16.c 262B
cpu_xop.c 246B
gfortran_vs2003_hack.c 83B
test_flags.c 17B
libdivide.h 80KB
ndarraytypes.h 71KB
__multiarray_api.h 62KB
npy_common.h 39KB
npy_math.h 21KB
npy_3kcompat.h 16KB
ufuncobject.h 13KB
__ufunc_api.h 13KB
ndarrayobject.h 11KB
distributions.h 10KB
noprefix.h 7KB
old_defines.h 6KB
fortranobject.h 5KB
npy_cpu.h 4KB
npy_1_7_deprecated_api.h 4KB
arrayscalars.h 4KB
npy_endian.h 3KB
_neighborhood_iterator_imp.h 2KB
halffloat.h 2KB
npy_interrupt.h 2KB
numpyconfig.h 2KB
utils.h 1KB
_numpyconfig.h 891B
npy_os.h 847B
oldnumeric.h 733B
npy_no_deprecated_api.h 586B
bitgen.h 409B
arrayobject.h 175B
README.md 1KB
test_multiarray.py 337KB
core.py 266KB
pyparsing.py 240KB
pyparsing.py 227KB
pyparsing.py 227KB
test_core.py 203KB
_add_newdocs.py 194KB
uts46data.py 194KB
function_base.py 163KB
random.py 148KB
test_umath.py 141KB
test_function_base.py 136KB
test_numeric.py 136KB
crackfortran.py 132KB
more.py 129KB
test_nditer.py 128KB
fromnumeric.py 124KB
test_format.py 119KB
html5parser.py 116KB
test_datetime.py 112KB
test_sql.py 110KB
core.py 110KB
system_info.py 110KB
test_generator_mt19937.py 109KB
__init__.py 106KB
__init__.py 105KB
test_io.py 103KB
ccompiler_opt.py 97KB
test_loc.py 96KB
test_to_datetime.py 95KB
test_ufunc.py 94KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
麦麦大数据
- 粉丝: 1974
- 资源: 21
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 大众经典发动机3D 大众经典发动机
- postgis-2.4.7.tar.gz
- postgis-2.5.2.tar.gz
- 基于python的校园预约打印网(django)源代码(python毕业设计完整源码+LW).zip
- Screenshot_20250101_103035_mark.via.jpg
- postgis-2.4.6.tar.gz
- 火焰喷射器3D 火焰喷射器
- 减速器含设计文档自动洗衣机行星齿轮减速器的设计
- 白色欧美风格的自助游旅行企业网站源码下载.zip
- 白色欧美风格的制造工厂企业网站源码下载.zip
- 白色欧美风格的专业院校整站网站源码下载.zip
- 白色欧美风格的左侧导航时尚企业网站源码下载.zip
- 白色清爽的阅读器软件官网模板下载.zip
- 白色欧美风格的综合购物电商整站网站源码下载.zip
- 白色清晰斜纹的英文网站模板下载.zip
- 白色清爽风的美食餐厅网站模板下载.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功