#### Get model optimized for RKNN
Exports model with optimization for RKNN, please refer here [RKOPT_README.md](./deploy/RKNN/RKOPT_README.md)
This optimization only affects the export of the model and does not affect the training process. **For the training steps, please refer to the YOLOv6 official documentation.**
---
<p align="center">
<img src="assets/banner-YOLO.png" align="middle" width = "1000" />
</p>
English | [ç®ä½ä¸æ](README_cn.md)
<br>
<div>
</a>
<a href="https://colab.research.google.com/github/meituan/YOLOv6/blob/main/turtorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/code/housanduo/yolov6"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
## YOLOv6
Implementation of paper:
- [YOLOv6 v3.0: A Full-Scale Reloading](https://arxiv.org/abs/2301.05586) ð¥
- [YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications](https://arxiv.org/abs/2209.02976)
<p align="center">
<img src="assets/speed_comparision_v3.png" align="middle" width = "1000" />
</p>
## What's New
- [2023.03.10] Release [YOLOv6-Face](https://github.com/meituan/YOLOv6/tree/yolov6-face). ð¥ [Performance](https://github.com/meituan/YOLOv6/tree/yolov6-face#performance-on-widerface)
- [2023.03.02] Update [base models](configs/base/README.md) to version 3.0.
- [2023.01.06] Release P6 models and enhance the performance of P5 models. âï¸ [Benchmark](#Benchmark)
- Renew the neck of the detector with a BiC module and SimCSPSPPF Block.
- Propose an anchor-aided training (AAT) strategy.
- Involve a new self-distillation strategy for small models of YOLOv6.
- Expand YOLOv6 and hit a new
SOTA performance on the COCO dataset.
- [2022.11.04] Release [base models](configs/base/README.md) to simplify the training and deployment process.
- [2022.09.06] Customized quantization methods. ð [Quantization Tutorial](./tools/qat/README.md)
- [2022.09.05] Release M/L models and update N/T/S models with enhanced performance.
- [2022.06.23] Release N/T/S models with excellent performance.
## Benchmark
| Model | Size | mAP<sup>val<br/>0.5:0.95 | Speed<sup>T4<br/>trt fp16 b1 <br/>(fps) | Speed<sup>T4<br/>trt fp16 b32 <br/>(fps) | Params<br/><sup> (M) | FLOPs<br/><sup> (G) |
| :----------------------------------------------------------- | ---- | :----------------------- | --------------------------------------- | ---------------------------------------- | -------------------- | ------------------- |
| [**YOLOv6-N**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n.pt) | 640 | 37.5 | 779 | 1187 | 4.7 | 11.4 |
| [**YOLOv6-S**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s.pt) | 640 | 45.0 | 339 | 484 | 18.5 | 45.3 |
| [**YOLOv6-M**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m.pt) | 640 | 50.0 | 175 | 226 | 34.9 | 85.8 |
| [**YOLOv6-L**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6l.pt) | 640 | 52.8 | 98 | 116 | 59.6 | 150.7 |
| | | | | |
| [**YOLOv6-N6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n6.pt) | 1280 | 44.9 | 228 | 281 | 10.4 | 49.8 |
| [**YOLOv6-S6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s6.pt) | 1280 | 50.3 | 98 | 108 | 41.4 | 198.0 |
| [**YOLOv6-M6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m6.pt) | 1280 | 55.2 | 47 | 55 | 79.6 | 379.5 |
| [**YOLOv6-L6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6l6.pt) | 1280 | 57.2 | 26 | 29 | 140.4 | 673.4 |
<details>
<summary>Table Notes</summary>
- All checkpoints are trained with self-distillation except for YOLOv6-N6/S6 models trained to 300 epochs without distillation.
- Results of the mAP and speed are evaluated on [COCO val2017](https://cocodataset.org/#download) dataset with the input resolution of 640Ã640 for P5 models and 1280x1280 for P6 models.
- Speed is tested with TensorRT 7.2 on T4.
- Refer to [Test speed](./docs/Test_speed.md) tutorial to reproduce the speed results of YOLOv6.
- Params and FLOPs of YOLOv6 are estimated on deployed models.
</details>
<details>
<summary>Legacy models</summary>
| Model | Size | mAP<sup>val<br/>0.5:0.95 | Speed<sup>T4<br/>trt fp16 b1 <br/>(fps) | Speed<sup>T4<br/>trt fp16 b32 <br/>(fps) | Params<br/><sup> (M) | FLOPs<br/><sup> (G) |
| :----------------------------------------------------------- | ---- | :------------------------------------ | --------------------------------------- | ---------------------------------------- | -------------------- | ------------------- |
| [**YOLOv6-N**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6n.pt) | 640 | 35.9<sup>300e</sup><br/>36.3<sup>400e | 802 | 1234 | 4.3 | 11.1 |
| [**YOLOv6-T**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6t.pt) | 640 | 40.3<sup>300e</sup><br/>41.1<sup>400e | 449 | 659 | 15.0 | 36.7 |
| [**YOLOv6-S**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6s.pt) | 640 | 43.5<sup>300e</sup><br/>43.8<sup>400e | 358 | 495 | 17.2 | 44.2 |
| [**YOLOv6-M**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6m.pt) | 640 | 49.5 | 179 | 233 | 34.3 | 82.2 |
| [**YOLOv6-L-ReLU**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6l_relu.pt) | 640 | 51.7 | 113 | 149 | 58.5 | 144.0 |
| [**YOLOv6-L**](https://github.com/meituan/YOLOv6/releases/download/0.2.0/yolov6l.pt) | 640 | 52.5 | 98 | 121 | 58.5 | 144.0 |
- Speed is tested with TensorRT 7.2 on T4.
### Quantized model ð
| Model | Size | Precision | mAP<sup>val<br/>0.5:0.95 | Speed<sup>T4<br/>trt b1 <br/>(fps) | Speed<sup>T4<br/>trt b32 <br/>(fps) |
| :-------------------- | ---- | --------- | :----------------------- | ---------------------------------- | ----------------------------------- |
| **YOLOv6-N RepOpt** | 640 | INT8 | 34.8 | 1114
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv6-main.zip (176个子文件)
yolov6.cpp 15KB
yolox.cpp 7KB
yolov5.cpp 6KB
yolov6.cpp 6KB
.gitignore 1KB
logging.h 16KB
YOLOv6-Dynamic-Batch-tensorrt.ipynb 6.32MB
inference.ipynb 4.73MB
YOLOv6-Dynamic-Batch-onnxruntime.ipynb 2.69MB
turtorial.ipynb 1.6MB
tutorial_voc.ipynb 9KB
train_batch.jpg 1.02MB
yoloxs.jpg 526KB
yolov5s.jpg 518KB
yolov6s.jpg 511KB
voc_loss_curve.jpg 326KB
sample.jpg 276KB
image2.jpg 140KB
image3.jpg 136KB
image3.jpg 115KB
image1.jpg 79KB
LICENSE 34KB
LICENSE 11KB
README.md 16KB
README_cn.md 15KB
Train_custom_data.md 5KB
README.md 5KB
README.md 4KB
README.md 4KB
README.md 3KB
README.md 3KB
README.md 3KB
Train_coco_data.md 3KB
README.md 3KB
RKOPT_README.md 2KB
tutorial_repopt.md 2KB
README.md 2KB
RKOPT_README_cn.md 2KB
README_cn.md 2KB
Test_speed.md 1KB
Tutorial of Quantization.md 946B
README.md 359B
README.md 14B
coco.names 625B
speed_comparision_v2.png 926KB
picture.png 517KB
speed_comparision_v3.png 500KB
wechat_qrcode.png 215KB
banner-YOLO.png 191KB
reppan.py 31KB
common.py 29KB
engine.py 28KB
evaler.py 24KB
datasets.py 24KB
eval_yolo_trt.py 16KB
loss_distill.py 16KB
loss_distill_ns.py 16KB
efficientrep.py 13KB
tensorrt_processor.py 13KB
inferer.py 12KB
onnx_utils.py 12KB
end2end.py 12KB
effidehead_fuseab.py 12KB
loss.py 11KB
ProgramEntrance.py 11KB
metrics.py 11KB
effidehead.py 10KB
onnx_to_tensorrt.py 10KB
loss_fuseab.py 10KB
effidehead_distill_ns.py 10KB
iou2d_calculator.py 9KB
qat_export.py 9KB
Calibrator.py 9KB
RepOptimizer.py 8KB
data_augment.py 8KB
onnx_to_trt.py 8KB
yolox.py 8KB
hubconf.py 7KB
tal_assigner.py 7KB
eval.py 7KB
atss_assigner.py 7KB
train.py 7KB
qat_utils.py 7KB
export_onnx.py 7KB
ptq.py 6KB
partial_quant.py 6KB
sensitivity_analyse.py 6KB
figure_iou.py 6KB
infer.py 5KB
yolo_video.py 5KB
nms.py 5KB
yolo.py 5KB
visualize.py 5KB
yolo.py 4KB
voc2yolo.py 4KB
calibrator.py 4KB
assigner_utils.py 4KB
export_openvino.py 4KB
yolov6s_opt_qat.py 3KB
torch_utils.py 3KB
共 176 条
- 1
- 2
资源评论
rain699
- 粉丝: 98
- 资源: 26
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功