<div align="center">
<p>
<a href="https://yolovision.ultralytics.com/" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-yolo-vision-2023.png"></a>
</p>
[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/)
<br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://codecov.io/github/ultralytics/ultralytics"><img src="https://codecov.io/github/ultralytics/ultralytics/branch/main/graph/badge.svg?token=HHW7IIVFVY" alt="Ultralytics Code Coverage"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
We hope that the resources here will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
## <div align="center">Documentation</div>
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
<details open>
<summary>Install</summary>
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
```bash
pip install ultralytics
```
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart).
</details>
<details open>
<summary>Usage</summary>
#### CLI
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.
#### Python
YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
model.train(data="coco128.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
path = model.export(format="onnx") # export the model to ONNX format
```
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
</details>
## <div align="center">Models</div>
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
All [Models](https://github.
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
1、yolov8绝缘子缺陷检测,包含训练好的道路指示牌识别权重,以及PR曲线,loss曲线等等,在绝缘子缺陷检测数据集中训练得到的权重,目标类别名为break_insulator共一个类别;并附绝缘子缺陷检测数据集,标签格式为txt和xml两种,分别保存在两个文件夹中 3、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 4、采用pytrch框架,python代码
资源推荐
资源详情
资源评论
收起资源包目录
yolov8绝缘子缺陷检ultralytics-main-yolov8-sts-insulator-break-data.zip (2000个子文件)
events.out.tfevents.1713106201.USER-20231125JB.25480.0 371KB
labels.cache 119KB
labels.cache 15KB
CITATION.cff 612B
CNAME 21B
inference.cpp 12KB
inference.cpp 6KB
main.cpp 4KB
main.cpp 2KB
style.css 1KB
results.csv 33KB
Dockerfile 4KB
Dockerfile-arm64 2KB
Dockerfile-conda 2KB
Dockerfile-cpu 2KB
Dockerfile-jetson 2KB
Dockerfile-python 2KB
Dockerfile-runner 2KB
inference.h 2KB
inference.h 2KB
comments.html 2KB
source-file.html 858B
favicon.ico 9KB
tutorial.ipynb 33KB
hub.ipynb 4KB
0780.jpg 839KB
train_batch0.jpg 554KB
val_batch0_pred.jpg 540KB
val_batch0_labels.jpg 537KB
train_batch2.jpg 535KB
train_batch1.jpg 501KB
train_batch450.jpg 419KB
train_batch452.jpg 406KB
0059.jpg 402KB
0108.jpg 397KB
train_batch451.jpg 391KB
0202.jpg 379KB
0203.jpg 364KB
0062.jpg 345KB
0200.jpg 343KB
0069.jpg 327KB
0122.jpg 326KB
0104.jpg 325KB
0120.jpg 321KB
0226.jpg 317KB
0098.jpg 314KB
0051.jpg 304KB
0082.jpg 302KB
0166.jpg 298KB
0237.jpg 298KB
0058.jpg 297KB
0147.jpg 294KB
0223.jpg 293KB
0097.jpg 292KB
0176.jpg 283KB
0056.jpg 282KB
0078.jpg 280KB
0094.jpg 278KB
0187.jpg 277KB
0107.jpg 276KB
0049.jpg 252KB
0143.jpg 241KB
labels_correlogram.jpg 217KB
0211.jpg 214KB
0164.jpg 191KB
3392.jpg 168KB
0740.jpg 155KB
3051.jpg 150KB
1731.jpg 150KB
1367.jpg 148KB
1196.jpg 147KB
1456.jpg 147KB
3438.jpg 145KB
0550.jpg 145KB
1490.jpg 145KB
1055.jpg 144KB
0706.jpg 143KB
1794.jpg 143KB
1145.jpg 139KB
3173.jpg 139KB
1500.jpg 139KB
0844.jpg 138KB
0680.jpg 137KB
1366.jpg 136KB
0183.jpg 136KB
0798.jpg 136KB
0874.jpg 136KB
0365.jpg 135KB
0341.jpg 134KB
0539.jpg 134KB
2362.jpg 133KB
2319.jpg 133KB
0950.jpg 133KB
2860.jpg 132KB
1492.jpg 132KB
3313.jpg 131KB
0618.jpg 131KB
1767.jpg 131KB
0320.jpg 130KB
1292.jpg 129KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
stsdddd
- 粉丝: 3w+
- 资源: 923
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- MATLAB界面设计报告.pdf
- 基于PHP实现的学生宿舍管理系统+项目源码+文档说明
- 微信小程序制作方案及流程-微信程序方案.pdf
- 【java毕业设计】家用电器销售网站源码(ssm+jsp+mysql+说明文档+LW).zip
- 【java毕业设计】固定资产管理系统源码(ssm+jsp+mysql+说明文档+LW).zip
- 如何降低电源的待机功耗
- Java基础面试题梳理及其关键知识点解析
- 【java毕业设计】个性化影片推荐系统源码(ssm+jsp+mysql+说明文档+LW).zip
- 课堂作业-基于PHP实现功能简单的学生管理系统+项目源码+文档说明
- 【java毕业设计】个人交友网站源码(ssm+jsp+mysql+说明文档+LW).zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功