<div align="center">
<p>
<a href="https://yolovision.ultralytics.com/" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-yolo-vision-2023.png"></a>
</p>
[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/)
<br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://codecov.io/github/ultralytics/ultralytics"><img src="https://codecov.io/github/ultralytics/ultralytics/branch/main/graph/badge.svg?token=HHW7IIVFVY" alt="Ultralytics Code Coverage"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
We hope that the resources here will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
## <div align="center">Documentation</div>
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
<details open>
<summary>Install</summary>
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
```bash
pip install ultralytics
```
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart).
</details>
<details open>
<summary>Usage</summary>
#### CLI
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.
#### Python
YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
model.train(data="coco128.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
path = model.export(format="onnx") # export the model to ONNX format
```
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
</details>
## <div align="center">Models</div>
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
All [Models](https://github.
stsdddd
- 粉丝: 3w+
- 资源: 985
最新资源
- "一注两抽技术:利用COMSOL模拟注气驱替煤层瓦斯的实践与探索",一注两抽,comsol注气驱替煤层瓦斯 ,核心关键词:一注两抽; comsol注气; 驱替; 煤层瓦斯; 注气驱替技术 ,一注两抽:
- “基于LQR模糊PID滑模控制的Carsim Simulink横摆稳定性仿真研究:理想横摆角速度与质心侧偏角的综合控制策略” ,Carsim Simulink联合仿真-基于LQR 模糊PID 滑模控制
- 优化需求响应下的区域综合能源系统双层调度策略基于博弈思维模型研究与应用基于Matlab + Yalmip平台的模型分析与优化,通过Cplex求解器实现高效决策,计及需求响应的区域综合能源系统双层优化调
- COMSOL软件实现路基冻胀融沉问题的水热力耦合计算模型,可复现白青波、秦晓同模型,二维模拟,时长一年 ,Comsol冻土水热力耦合模型代做 可复现白青波,秦晓同模型 建立了路基水热耦合计算控制方程
- 初学者友好型:Buck DCDC转换器教学资料集 - 基于TSMC 18工艺设计、设计仿真、原理说明与参考论文,buck DCDC,适合初学者学习,有配套的设计仿真、原理说明pdf,还有参考轮文 1
- 光伏三相并网技术:实现高效功率输出与稳定直流母线电压的智能逆变策略,光伏三相并网: 1.光伏10kw+MPPT控制+两级式并网逆变器(boost+三相桥式逆变) 2.坐标变+锁相环+dq功率控制+解耦
- 分布式驱动电动汽车的最优直接横摆力矩控制与规则扭矩分配控制策略:基于LQR计算与最小附着利用率分配的稳定性提升及源码仿真研究,分布式驱动电动汽车 直接横摆力矩控制 最优 规则扭矩分配控制 上层lqr计
- 这个应用有两个路由,访问根目录“/”会显示欢迎信息,访问“/about”会显示关于页面的内容 通过app.run(debug=True)开启调试模式,方便开发时查看错误信息和自动重启服务器
- 基于光伏出力利用率的电动汽车充电站能量调度策略:构建充放电灵活度评估模型,提升光伏利用率与充电任务完成率,优化电价制定,实现V2G服务深度融合 ,考虑光伏出力利用率的电动汽车充电站能量调度策略 程序
- 基于傅里叶展开的岩土颗粒粗糙度计算方法及其Matlab源代码实现,岩土颗粒粗糙度计算,采用傅里叶展开 matlab源代码 生成颗粒均方根粗糙度,算术平均粗糙度 方法来自非规则颗粒形态表征与离散元
- 三相光伏并网Matlab Simulink仿真:MPPT控制最大功率追踪,LCL滤波器,不同光照条件下的动态响应研究,三相光伏并网Matlab simulink仿真 光伏采用MPPT控制以实现最大功
- 时空因果卷积神经网络模型:无信息泄漏的负荷预测、空气质量预测与光伏预测核心算法,时空因果卷积神经网络(ST-CausalConvNet)提出的模型的显著特征是模型架构中的卷积是因果的,其中某个时间步长
- 大模型时代的数据管理.pdf
- TSMC 28nm工艺库:全面文档支持的可仿真技术,tsmc28nm工艺库,可仿真 文档齐全 ,核心关键词:tsmc28nm工艺库; 可仿真; 文档齐全;,"TSMC 28nm工艺库:仿真可用,文档完
- 基于Abaqus 2020的修正GTN模型:考虑剪切、静水压力、各向异性和同性的子程序开发及案例分析,修正的考虑剪切和静水压力的各向异性和各向同性 GTN 模型 Abaqus-Vumat 子程序以及跑
- 互联网+充电桩解决方案.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈