1.000000 1.000000 0.999926 0.997625 1.000000 0.000000 0.130347 0.272082 0.212586 0.000000 0.001882 0.002738 0.626984 0.269579 0.205128 0.458604 0.003593 0.993111 0.550773 0.400540 0.000000 0.288660 0.627907 1.000000 0.015473 0.015881
1.000000 2.000000 0.476147 0.831591 1.000000 0.626985 0.647972 0.634407 0.511781 0.507937 0.498118 0.450787 0.862888 0.601411 0.358974 0.641234 0.450364 0.992395 0.481761 0.351346 0.000000 0.608247 0.864693 1.000000 0.477968 0.481487
1.000000 3.000000 0.999900 0.998694 1.000000 0.000000 0.123646 0.271244 0.222481 0.000000 0.001255 0.004625 0.627110 0.265760 0.205128 0.456169 0.003202 0.993056 0.531031 0.423787 0.000000 0.278351 0.627907 1.000000 0.010764 0.018932
1.000000 4.000000 0.999810 0.997625 1.000000 0.000000 0.121351 0.266168 0.224835 0.000000 0.001882 0.004164 0.627026 0.270428 0.230769 0.457792 0.003641 0.993194 0.553706 0.401716 0.000000 0.268041 0.627907 1.000000 0.012782 0.018724
1.000000 5.000000 0.595275 0.737173 0.000000 0.238089 0.005691 0.033916 0.022025 0.293184 0.208908 0.088924 0.001055 0.008604 0.000000 0.035714 0.087492 0.001405 0.048140 0.920536 0.000000 0.030928 0.000000 0.000000 0.130172 0.145560
1.000000 6.000000 0.833165 0.997625 1.000000 0.060269 0.177070 0.297572 0.222385 0.146592 0.144291 0.132639 0.650004 0.293236 0.230769 0.438312 0.130969 0.992781 0.500926 0.400920 0.000000 0.288660 0.651163 1.000000 0.159771 0.158498
1.000000 7.000000 0.000045 0.000119 1.000000 1.000000 0.976226 0.920260 0.887402 1.000000 0.998118 0.957758 0.998481 0.879312 0.948718 0.884740 0.958429 0.992836 0.678433 0.076212 1.000000 0.917526 1.000000 1.000000 0.967709 0.975990
1.000000 8.000000 0.999764 0.997625 1.000000 0.000000 0.124564 0.274053 0.207398 0.000000 0.001255 0.002209 0.627110 0.266246 0.205128 0.451299 0.003275 0.993056 0.553563 0.412440 0.000000 0.278351 0.627907 1.000000 0.013118 0.010921
1.000000 9.000000 0.999848 0.997625 1.000000 0.000000 0.129154 0.270515 0.185541 0.000000 0.001882 0.004256 0.627068 0.266683 0.230769 0.438312 0.003275 0.993139 0.541876 0.402235 0.000000 0.268041 0.627907 1.000000 0.015809 0.012426
1.000000 10.000000 0.595170 0.738361 0.000000 0.238089 0.007986 0.024951 0.040711 0.293184 0.209536 0.088648 0.001076 0.017587 0.025641 0.016234 0.087419 0.001543 0.056821 0.947346 0.000000 0.030928 0.000000 0.000000 0.140599 0.141993
1.000000 11.000000 0.476138 0.831354 1.000000 0.626985 0.655407 0.635514 0.501141 0.507937 0.498118 0.453364 0.862973 0.598128 0.358974 0.634740 0.451268 0.992671 0.491211 0.342835 0.000000 0.628866 0.864693 1.000000 0.486714 0.482346
1.000000 12.000000 0.833158 0.997625 1.000000 0.060269 0.174867 0.333000 0.236123 0.146592 0.144918 0.132293 0.650026 0.291141 0.230769 0.439123 0.130505 0.992754 0.506240 0.390369 0.000000 0.309278 0.651163 1.000000 0.152035 0.156784
1.000000 13.000000 0.595091 0.736342 0.000000 0.238089 0.007711 0.040963 0.039510 0.293184 0.209536 0.088257 0.001182 0.012835 0.025641 0.030844 0.086417 0.001571 0.046577 0.921297 0.000000 0.030928 0.000000 0.000000 0.142953 0.141673
1.000000 14.000000 0.476233 0.832304 1.000000 0.626985 0.659446 0.614749 0.523574 0.507937 0.498118 0.454491 0.863015 0.602029 0.358974 0.639610 0.452099 0.992726 0.494289 0.363765 0.000000 0.639175 0.864693 1.000000 0.475614 0.484593
1.000000 15.000000 0.595125 0.736342 0.000000 0.238089 0.005875 0.044150 0.031512 0.293184 0.209536 0.088947 0.001076 0.016852 0.025641 0.031656 0.085830 0.001488 0.043163 0.942745 0.000000 0.020619 0.000000 0.000000 0.138244 0.138802
1.000000 16.000000 0.476114 0.832779 1.000000 0.626985 0.648706 0.624173 0.533229 0.507937 0.498118 0.452904 0.862952 0.604199 0.358974 0.633117 0.451268 0.992754 0.493352 0.352453 0.000000 0.608247 0.864693 1.000000 0.483687 0.482903
1.000000 17.000000 0.238024 0.297625 1.000000 0.597937 0.627134 0.653336 0.645947 0.617180 0.614178 0.590351 0.852401 0.643084 0.846154 0.722402 0.589594 0.992781 0.665712 0.164464 1.000000 0.680412 0.854123 1.000000 0.615204 0.624306
1.000000 18.000000 0.999852 0.997625 1.000000 0.000000 0.127960 0.275484 0.214819 0.000000 0.001882 0.002876 0.627152 0.267681 0.230769 0.459416 0.004570 0.993084 0.560872 0.405210 0.000000 0.278351 0.627907 1.000000 0.015473 0.016246
1.000000 19.000000 0.476174 0.831354 1.000000 0.626985 0.653296 0.620149 0.512357 0.507937 0.498118 0.452834 0.862909 0.598507 0.358974 0.644480 0.450828 0.992588 0.496718 0.368747 0.000000 0.628866 0.864693 1.000000 0.470232 0.478465
1.000000 20.000000 0.476266 0.833017 1.000000 0.626985 0.651552 0.633543 0.506113 0.507937 0.498118 0.454077 0.862909 0.601435 0.358974 0.644480 0.452197 0.992533 0.500036 0.351069 0.000000 0.628866 0.864693 1.000000 0.477968 0.478689
1.000000 21.000000 0.000064 0.001306 1.000000 1.000000 0.974665 0.902601 0.897130 1.000000 0.998118 0.954376 0.997173 0.865347 0.948718 0.900974 0.955325 0.991183 0.664631 0.077389 1.000000 0.907216 1.000000 1.000000 0.966364 0.965019
1.000000 22.000000 0.476159 0.831354 1.000000 0.626985 0.657885 0.621230 0.504791 0.507937 0.498118 0.450994 0.862952 0.592197 0.358974 0.637987 0.452613 0.992533 0.490298 0.351795 0.000000 0.628866 0.864693 1.000000 0.480659 0.487234
1.000000 23.000000 0.000005 0.002138 1.000000 1.000000 0.976868 0.905760 0.881230 1.000000 0.998118 0.958195 0.998502 0.873027 0.948718 0.893669 0.958820 0.992946 0.693509 0.077216 1.000000 0.907216 1.000000 1.000000 0.968718 0.973782
1.000000 24.000000 0.595244 0.736342 0.000000 0.238089 0.005508 0.025005 0.020247 0.293184 0.208908 0.089085 0.001140 0.011697 0.000000 0.032467 0.085513 0.001571 0.052276 0.937764 0.000000 0.010309 0.000000 0.000000 0.138581 0.137909
1.000000 25.000000 0.999969 0.999169 1.000000 0.000000 0.125207 0.268706 0.217605 0.000000 0.001882 0.006166 0.627005 0.265165 0.230769 0.459416 0.004326 0.993029 0.542694 0.397703 0.000000 0.278351 0.627907 1.000000 0.010091 0.013505
1.000000 26.000000 0.476097 0.831354 1.000000 0.626985 0.649257 0.633435 0.521700 0.507937 0.498118 0.452581 0.863036 0.596395 0.358974 0.623377 0.451684 0.992671 0.508067 0.355878 0.000000 0.628866 0.864693 1.000000 0.478977 0.478740
1.000000 27.000000 0.238140 0.296912 1.000000 0.597937 0.629062 0.686874 0.641455 0.617180 0.614806 0.590972 0.852465 0.646887 0.846154 0.732954 0.591891 0.992781 0.660205 0.160416 1.000000 0.670103 0.854123 1.000000 0.617894 0.620890
1.000000 28.000000 0.000055 0.000475 1.000000 1.000000 0.982926 0.903680 0.899796 1.000000 0.998118 0.954698 0.997257 0.867888 0.948718 0.903409 0.953810 0.991430 0.654627 0.086176 1.000000 0.907216 1.000000 1.000000 0.960982 0.970945
1.000000 29.000000 0.595258 0.736342 0.000000 0.238089 0.004131 0.015527 0.039342 0.293184 0.208908 0.088832 0.001097 0.018535 0.025641 0.038149 0.085928 0.001433 0.046625 0.930879 0.000000 0.030928 0.000000 0.000000 0.142617 0.138027
1.000000 30.000000 0.476145 0.831354 1.000000 0.626985 0.652928 0.620663 0.512958 0.507937 0.498118 0.451707 0.862867 0.595752 0.358974 0.637175 0.451097 0.992643 0.498810 0.359337 0.000000 0.618557 0.864693 1.000000 0.480659 0.484925
1.000000 31.000000 0.476169 0.831354 1.000000 0.626985 0.656508 0.648071 0.505008 0.507937 0.498118 0.452259 0.862994 0.597815 0.358974 0.633117 0.451562 0.992643 0.505758 0.364423 0.000000 0.608247 0.864693 1.000000 0.480323 0.485554
1.000000 32.000000 0.833325 0.997625 1.000000 0.060269 0.177988 0.289363 0.224426 0.146592 0.144291 0.132523 0.650089 0.298351 0.230769 0.429383 0.132509 0.992918 0.521004 0.395662 0.000000 0.298969 0.651163 1.000000 0.166835 0.159958
1.000000 33.000000 0.999769 1.000000 1.000000 0.000000 0.129337 0.271244 0.204827 0.000000 0.001882 0.002370 0.627005 0.270470 0.230769 0.460227 0.004081 0.993111 0.557650 0.398222 0.000000 0.268041 0.627907 1.000000 0.012782 0.010578
1.000000 34.000000 0.833298 0.997981 1.000000 0.060269 0.175877 0.292550 0.236484 0.146592 0.144918 0.131350 0.650004 0.289384 0.230769 0.432630 0.132265 0.992781 0.510833 0.399017 0.000000 0.319588 0.651163 1.000000 0.159
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
使用LSTM实现C-MAPSS数据集里面的剩余寿命预测(Pytorch) 每轮训练后测试集误差 score:445.4610 334.5140 358.6489 365.9250 331.4520 283.3463 460.4766 314.7196 325.5950 452.3746 RMSE:16.3614 14.8254 14.9796 15.5157 14.7853 14.2053 16.2834 14.6757 14.7481 15.8802 由实验结果可知,MS-BLSTM 的预测误差均为最低水平,并且实际训练过程中收敛速度较快,涡扇发动机接近损坏时预测准确率较高。与传统机器学习方法相比,深度学习模型如CNN 和 LSTM的预测误差相对较小。而本文所提的 MS-BLSTM 混合深度学习预测模型进一步提高了 RUL 预测精度,,这得益于 MS-BLSTM 混合模型有效利用了时间段内传感器测量值的均值和方差与RUL的相关性,并使用 BLSTM学习历史数据和未来数据的长程依赖。本文所提的 MS-BLSTM 剩余使用寿命预测模型预测精度高,可有力支撑涡扇发动机的健康管理与运维决策。
资源推荐
资源详情
资源评论
收起资源包目录
Turbofan-engine-RUL-prediction.zip (19个子文件)
turbofandataset.py 5KB
preprocess.py 1KB
FD001_BCLSTM_result.txt 172B
main.py 2KB
model.py 3KB
datasets
CMAPSSData
test_FD001_normed.txt 2.96MB
train_FD004.txt 9.93MB
test_FD004.txt 6.67MB
train_FD004_normed.txt 13.91MB
RUL_FD001.txt 529B
test_FD004_normed.txt 9.35MB
train_FD001.txt 3.37MB
RUL_FD004.txt 1KB
train_FD001_normed.txt 4.67MB
test_FD001.txt 2.14MB
train.py 5KB
__pycache__
model.cpython-39.pyc 4KB
turbofandataset.cpython-39.pyc 3KB
train.cpython-39.pyc 3KB
共 19 条
- 1
资源评论
汐织海纳_Hina
- 粉丝: 318
- 资源: 1
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功