# Multi-Object Tracking with Ultralytics YOLO
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418637-1d6250fd-1515-4c10-a844-a32818ae6d46.png">
Object tracking in the realm of video analytics is a critical task that not only identifies the location and class of objects within the frame but also maintains a unique ID for each detected object as the video progresses. The applications are limitless—ranging from surveillance and security to real-time sports analytics.
## Why Choose Ultralytics YOLO for Object Tracking?
The output from Ultralytics trackers is consistent with standard object detection but has the added value of object IDs. This makes it easy to track objects in video streams and perform subsequent analytics. Here's why you should consider using Ultralytics YOLO for your object tracking needs:
- **Efficiency:** Process video streams in real-time without compromising accuracy.
- **Flexibility:** Supports multiple tracking algorithms and configurations.
- **Ease of Use:** Simple Python API and CLI options for quick integration and deployment.
- **Customizability:** Easy to use with custom trained YOLO models, allowing integration into domain-specific applications.
**Video Tutorial:** [Object Detection and Tracking with Ultralytics YOLOv8](https://www.youtube.com/embed/hHyHmOtmEgs?si=VNZtXmm45Nb9s-N-).
## Features at a Glance
Ultralytics YOLO extends its object detection features to provide robust and versatile object tracking:
- **Real-Time Tracking:** Seamlessly track objects in high-frame-rate videos.
- **Multiple Tracker Support:** Choose from a variety of established tracking algorithms.
- **Customizable Tracker Configurations:** Tailor the tracking algorithm to meet specific requirements by adjusting various parameters.
## Available Trackers
Ultralytics YOLO supports the following tracking algorithms. They can be enabled by passing the relevant YAML configuration file such as `tracker=tracker_type.yaml`:
- [BoT-SORT](https://github.com/NirAharon/BoT-SORT) - Use `botsort.yaml` to enable this tracker.
- [ByteTrack](https://github.com/ifzhang/ByteTrack) - Use `bytetrack.yaml` to enable this tracker.
The default tracker is BoT-SORT.
## Tracking
To run the tracker on video streams, use a trained Detect, Segment or Pose model such as YOLOv8n, YOLOv8n-seg and YOLOv8n-pose.
#### Python
```python
from ultralytics import YOLO
# Load an official or custom model
model = YOLO("yolov8n.pt") # Load an official Detect model
model = YOLO("yolov8n-seg.pt") # Load an official Segment model
model = YOLO("yolov8n-pose.pt") # Load an official Pose model
model = YOLO("path/to/best.pt") # Load a custom trained model
# Perform tracking with the model
results = model.track(
source="https://youtu.be/LNwODJXcvt4", show=True
) # Tracking with default tracker
results = model.track(
source="https://youtu.be/LNwODJXcvt4", show=True, tracker="bytetrack.yaml"
) # Tracking with ByteTrack tracker
```
#### CLI
```bash
# Perform tracking with various models using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" # Official Detect model
yolo track model=yolov8n-seg.pt source="https://youtu.be/LNwODJXcvt4" # Official Segment model
yolo track model=yolov8n-pose.pt source="https://youtu.be/LNwODJXcvt4" # Official Pose model
yolo track model=path/to/best.pt source="https://youtu.be/LNwODJXcvt4" # Custom trained model
# Track using ByteTrack tracker
yolo track model=path/to/best.pt tracker="bytetrack.yaml"
```
As can be seen in the above usage, tracking is available for all Detect, Segment and Pose models run on videos or streaming sources.
## Configuration
### Tracking Arguments
Tracking configuration shares properties with Predict mode, such as `conf`, `iou`, and `show`. For further configurations, refer to the [Predict](https://docs.ultralytics.com/modes/predict/) model page.
#### Python
```python
from ultralytics import YOLO
# Configure the tracking parameters and run the tracker
model = YOLO("yolov8n.pt")
results = model.track(
source="https://youtu.be/LNwODJXcvt4", conf=0.3, iou=0.5, show=True
)
```
#### CLI
```bash
# Configure tracking parameters and run the tracker using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" conf=0.3, iou=0.5 show
```
### Tracker Selection
Ultralytics also allows you to use a modified tracker configuration file. To do this, simply make a copy of a tracker config file (for example, `custom_tracker.yaml`) from [ultralytics/cfg/trackers](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/trackers) and modify any configurations (except the `tracker_type`) as per your needs.
#### Python
```python
from ultralytics import YOLO
# Load the model and run the tracker with a custom configuration file
model = YOLO("yolov8n.pt")
results = model.track(
source="https://youtu.be/LNwODJXcvt4", tracker="custom_tracker.yaml"
)
```
#### CLI
```bash
# Load the model and run the tracker with a custom configuration file using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" tracker='custom_tracker.yaml'
```
For a comprehensive list of tracking arguments, refer to the [ultralytics/cfg/trackers](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/trackers) page.
## Python Examples
### Persisting Tracks Loop
Here is a Python script using OpenCV (`cv2`) and YOLOv8 to run object tracking on video frames. This script still assumes you have already installed the necessary packages (`opencv-python` and `ultralytics`). The `persist=True` argument tells the tracker than the current image or frame is the next in a sequence and to expect tracks from the previous image in the current image.
#### Python
```python
import cv2
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("yolov8n.pt")
# Open the video file
video_path = "path/to/video.mp4"
cap = cv2.VideoCapture(video_path)
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if success:
# Run YOLOv8 tracking on the frame, persisting tracks between frames
results = model.track(frame, persist=True)
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Tracking", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
```
Please note the change from `model(frame)` to `model.track(frame)`, which enables object tracking instead of simple detection. This modified script will run the tracker on each frame of the video, visualize the results, and display them in a window. The loop can be exited by pressing 'q'.
### Plotting Tracks Over Time
Visualizing object tracks over consecutive frames can provide valuable insights into the movement patterns and behavior of detected objects within a video. With Ultralytics YOLOv8, plotting these tracks is a seamless and efficient process.
In the following example, we demonstrate how to utilize YOLOv8's tracking capabilities to plot the movement of detected objects across multiple video frames. This script involves opening a video file, reading it frame by frame, and utilizing the YOLO model to identify and track various objects. By retaining the center points of the detected bounding boxes and connecting them, we can draw lines that represent the paths followed by the tracked objects.
#### Python
```python
from collections import defaultdict
import cv2
import numpy as np
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("yolov8n.pt")
# Open the video file
v
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
YOLOv8 航拍车辆识别项目代码 项目详细介绍请看链接: https://blog.csdn.net/qq_53332949/article/details/143860502 数据集详细介绍请看:https://blog.csdn.net/qq_53332949/article/details/140885973 数据集下载请看:https://download.csdn.net/download/qq_53332949/89720083?spm=1001.2101.3001.9500 按文件中requirements.txt文件配置环境即可使用。
资源推荐
资源详情
资源评论
收起资源包目录
<项目代码>YOLOv8 航拍车辆识别<目标检测> (474个子文件)
CITATION.cff 612B
setup.cfg 2KB
CNAME 21B
inference.cpp 11KB
inference.cpp 6KB
main.cpp 4KB
main.cpp 2KB
style.css 1KB
results.csv 66KB
Dockerfile 4KB
Dockerfile-arm64 2KB
Dockerfile-conda 2KB
Dockerfile-cpu 3KB
Dockerfile-jetson 2KB
Dockerfile-python 2KB
Dockerfile-runner 2KB
.gitignore 2KB
inference.h 2KB
inference.h 2KB
comments.html 2KB
source-file.html 858B
favicon.ico 9KB
MANIFEST.in 200B
tutorial.ipynb 32KB
hub.ipynb 3KB
val_batch0_pred.jpg 542KB
val_batch2_pred.jpg 539KB
val_batch1_pred.jpg 538KB
val_batch0_labels.jpg 535KB
val_batch2_labels.jpg 535KB
val_batch1_labels.jpg 530KB
train_batch2.jpg 396KB
train_batch96710.jpg 375KB
train_batch1.jpg 370KB
train_batch96711.jpg 366KB
train_batch0.jpg 364KB
train_batch96712.jpg 325KB
labels_correlogram.jpg 246KB
bus.jpg 134KB
labels.jpg 118KB
zidane.jpg 49KB
LICENSE 34KB
predict.md 39KB
cfg.md 22KB
openvino.md 20KB
quickstart.md 18KB
train.md 17KB
yolo-common-issues.md 17KB
track.md 17KB
train_custom_data.md 17KB
roboflow.md 15KB
yolov8.md 15KB
model_export.md 15KB
inference_api.md 14KB
pytorch_hub_model_loading.md 14KB
README.md 13KB
models.md 13KB
kfold-cross-validation.md 12KB
sam.md 12KB
pose.md 12KB
architecture_description.md 12KB
segment.md 12KB
CI.md 11KB
multi_gpu_training.md 11KB
detect.md 11KB
test_time_augmentation.md 11KB
clearml_logging_integration.md 11KB
ray-tune.md 11KB
comet_logging_integration.md 11KB
hyperparameter_evolution.md 11KB
projects.md 11KB
neural_magic_pruning_quantization.md 11KB
classify.md 11KB
model_ensembling.md 10KB
python.md 10KB
running_on_jetson_nano.md 10KB
yolov5.md 10KB
hyperparameter-tuning.md 10KB
datasets.md 9KB
cli.md 9KB
index.md 9KB
model_pruning_and_sparsity.md 9KB
fast-sam.md 8KB
raspberry-pi.md 8KB
index.md 8KB
export.md 8KB
azureml-quickstart.md 8KB
android.md 7KB
sahi-tiled-inference.md 7KB
transfer_learning_with_frozen_layers.md 7KB
index.md 7KB
yolo-nas.md 7KB
tips_for_best_training_results.md 7KB
index.md 7KB
index.md 7KB
index.md 6KB
yolov4.md 6KB
benchmark.md 6KB
open-images-v7.md 6KB
yolov7.md 6KB
共 474 条
- 1
- 2
- 3
- 4
- 5
资源评论
深度学习lover
- 粉丝: 1314
- 资源: 217
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 【小程序毕业设计】微信点餐系统源码(完整前后端+mysql+说明文档).zip
- 【小程序毕业设计】python童心党史小程序源码(完整前后端+mysql+说明文档).zip
- DLL库依赖分析工具(Dependencies-x64)
- 【小程序毕业设计】同城交易小程序源码(完整前后端+mysql+说明文档).zip
- JavaScript《基于SpringBoot的多人博客系统(仿CSDN)》+项目源码+文档说明
- 【小程序毕业设计】数学辅导微信小程序源码(完整前后端+mysql+说明文档+LW).zip
- Java《基于springboot框架搭建的B2C商城》+项目源码+文档说明
- 【小程序毕业设计】面向企事业单位的项目申报小程序源码(完整前后端+mysql+说明文档+LW).zip
- 【小程序毕业设计】论坛小程序源码(完整前后端+mysql+说明文档).zip
- Java《基于SSM的高校共享单车管理系统》+项目源码+文档说明
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功