## YOLOV7:You Only Look Once目标检测模型在pytorch当中的实现
---
## 目录
1. [仓库更新 Top News](#仓库更新)
2. [相关仓库 Related code](#相关仓库)
3. [性能情况 Performance](#性能情况)
4. [所需环境 Environment](#所需环境)
5. [文件下载 Download](#文件下载)
6. [训练步骤 How2train](#训练步骤)
7. [预测步骤 How2predict](#预测步骤)
8. [评估步骤 How2eval](#评估步骤)
9. [参考资料 Reference](#Reference)
## Top News
**`2022-07`**:**仓库创建,支持step、cos学习率下降法、支持adam、sgd优化器选择、支持学习率根据batch_size自适应调整、新增图片裁剪、支持多GPU训练、支持各个种类目标数量计算、支持heatmap、支持EMA。**
## 相关仓库
| 模型 | 路径 |
| :----- | :----- |
YoloV3 | https://github.com/bubbliiiing/yolo3-pytorch
Efficientnet-Yolo3 | https://github.com/bubbliiiing/efficientnet-yolo3-pytorch
YoloV4 | https://github.com/bubbliiiing/yolov4-pytorch
YoloV4-tiny | https://github.com/bubbliiiing/yolov4-tiny-pytorch
Mobilenet-Yolov4 | https://github.com/bubbliiiing/mobilenet-yolov4-pytorch
YoloV5-V5.0 | https://github.com/bubbliiiing/yolov5-pytorch
YoloV5-V6.1 | https://github.com/bubbliiiing/yolov5-v6.1-pytorch
YoloX | https://github.com/bubbliiiing/yolox-pytorch
YoloV7 | https://github.com/bubbliiiing/yolov7-pytorch
## 性能情况
| 训练数据集 | 权值文件名称 | 测试数据集 | 输入图片大小 | mAP 0.5:0.95 | mAP 0.5 |
| :-----: | :-----: | :------: | :------: | :------: | :-----: |
| COCO-Train2017 | [yolov7_weights.pth](https://github.com/bubbliiiing/yolov7-pytorch/releases/download/v1.0/yolov7_weights.pth) | COCO-Val2017 | 640x640 | 50.7 | 69.2
| COCO-Train2017 | [yolov7_x_weights.pth](https://github.com/bubbliiiing/yolov7-pytorch/releases/download/v1.0/yolov7_x_weights.pth) | COCO-Val2017 | 640x640 | 52.4 | 70.5
## 所需环境
torch==1.2.0
为了使用amp混合精度,推荐使用torch1.7.1以上的版本。
## 文件下载
训练所需的权值可在百度网盘中下载。
链接: https://pan.baidu.com/s/1uYpjWC1uOo3Q-klpUEy9LQ
提取码: pmua
VOC数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分:
链接: https://pan.baidu.com/s/19Mw2u_df_nBzsC2lg20fQA
提取码: j5ge
## 训练步骤
### a、训练VOC07+12数据集
1. 数据集的准备
**本文使用VOC格式进行训练,训练前需要下载好VOC07+12的数据集,解压后放在根目录**
2. 数据集的处理
修改voc_annotation.py里面的annotation_mode=2,运行voc_annotation.py生成根目录下的2007_train.txt和2007_val.txt。
3. 开始网络训练
train.py的默认参数用于训练VOC数据集,直接运行train.py即可开始训练。
4. 训练结果预测
训练结果预测需要用到两个文件,分别是yolo.py和predict.py。我们首先需要去yolo.py里面修改model_path以及classes_path,这两个参数必须要修改。
**model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。**
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。
### b、训练自己的数据集
1. 数据集的准备
**本文使用VOC格式进行训练,训练前需要自己制作好数据集,**
训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
2. 数据集的处理
在完成数据集的摆放之后,我们需要利用voc_annotation.py获得训练用的2007_train.txt和2007_val.txt。
修改voc_annotation.py里面的参数。第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt。
训练自己的数据集时,可以自己建立一个cls_classes.txt,里面写自己所需要区分的类别。
model_data/cls_classes.txt文件内容为:
```python
cat
dog
...
```
修改voc_annotation.py中的classes_path,使其对应cls_classes.txt,并运行voc_annotation.py。
3. 开始网络训练
**训练的参数较多,均在train.py中,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的classes_path。**
**classes_path用于指向检测类别所对应的txt,这个txt和voc_annotation.py里面的txt一样!训练自己的数据集必须要修改!**
修改完classes_path后就可以运行train.py开始训练了,在训练多个epoch后,权值会生成在logs文件夹中。
4. 训练结果预测
训练结果预测需要用到两个文件,分别是yolo.py和predict.py。在yolo.py里面修改model_path以及classes_path。
**model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。**
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。
## 预测步骤
### a、使用预训练权重
1. 下载完库后解压,在百度网盘下载权值,放入model_data,运行predict.py,输入
```python
img/street.jpg
```
2. 在predict.py里面进行设置可以进行fps测试和video视频检测。
### b、使用自己训练的权重
1. 按照训练步骤训练。
2. 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;**model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类**。
```python
_defaults = {
#--------------------------------------------------------------------------#
# 使用自己训练好的模型进行预测一定要修改model_path和classes_path!
# model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
#
# 训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
# 验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。
# 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
#--------------------------------------------------------------------------#
"model_path" : 'model_data/yolov7_weights.pth',
"classes_path" : 'model_data/coco_classes.txt',
#---------------------------------------------------------------------#
# anchors_path代表先验框对应的txt文件,一般不修改。
# anchors_mask用于帮助代码找到对应的先验框,一般不修改。
#---------------------------------------------------------------------#
"anchors_path" : 'model_data/yolo_anchors.txt',
"anchors_mask" : [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
#---------------------------------------------------------------------#
# 输入图片的大小,必须为32的倍数。
#---------------------------------------------------------------------#
"input_shape" : [640, 640],
#------------------------------------------------------#
# 所使用到的yolov7的版本,本仓库一共提供两个:
# l : 对应yolov7
# x : 对应yolov7_x
#------------------------------------------------------#
"phi" : 'l',
#---------------------------------------------------------------------#
# 只有得分大于置信度的预测框会被保留下来
#---------------------------------------------------------------------#
"confidence" : 0.5,
#---------------------------------------------------------------------#
# 非极大抑制所用到的nms_iou大小
#---------------------------------------------------------------------#
"nms_iou" : 0.3,
#---------------------------------------------------------------------#
# 该变量用于控制是否使用letterbox_image对输入图�
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
yolov7-pytorch-master.zip (34个子文件)
yolov7-pytorch-master
voc_annotation.py 7KB
kmeans_for_anchors.py 6KB
LICENSE 34KB
predict.py 9KB
utils
utils.py 3KB
__init__.py 1B
utils_bbox.py 21KB
utils_map.py 36KB
dataloader.py 16KB
utils_fit.py 4KB
callbacks.py 10KB
nets
__init__.py 1B
backbone.py 5KB
yolo_training.py 31KB
yolo.py 14KB
model_data
yolo_anchors.txt 85B
simhei.ttf 9.3MB
coco_classes.txt 625B
voc_classes.txt 134B
utils_coco
get_map_coco.py 5KB
coco_annotation.py 4KB
常见问题汇总.md 44KB
img
street.jpg 437KB
VOCdevkit
VOC2007
ImageSets
Main
README.md 24B
Annotations
README.md 18B
JPEGImages
README.md 18B
summary.py 1KB
requirements.txt 141B
get_map.py 8KB
logs
README.md 37B
.gitignore 2KB
train.py 33KB
README.md 10KB
yolo.py 21KB
共 34 条
- 1
资源评论
TechMasterPlus
- 粉丝: 2945
- 资源: 24
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 用Python在控制台绘制爱心形状的技术实例
- 用Python编程实现控制台爱心形状绘制技术教程
- 这是 YOLOv4 的 pytorch 存储库,可以使用自定义数据集进行训练 .zip
- 这是 HIC-Yolov5 的存储库.zip
- 这只是另一个 YOLO V2 实现 在 jupyter 笔记本中训练您自己的数据集!.zip
- PicGo 是一个用于快速上传图片并获取图片 URL 链接的工具
- uniapp vue3 自定义下拉刷新组件pullRefresh,带释放刷新状态、更新时间、加载动画
- WINDOWS 2003邮箱服务器搭建
- 距离-IoU 损失更快、更好的边界框回归学习 (AAAI 2020).zip
- 该项目是运行在RK3588平台上的Yolo多线程推理demo,已适配读取视频文件和摄像头信号,demo采用Yolov8n模型进行文件推理,最高推理帧率可达100帧,秒 .zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功