<p align="center">
<a href="https://github.com/SuperBruceJia/EEG-DL"> <img width="500px" src="https://github.com/SuperBruceJia/EEG-DL/raw/master/Logo.png"></a>
<br />
<br />
<a href="https://gitter.im/EEG-DL/community"><img alt="Chat on Gitter" src="https://img.shields.io/gitter/room/nwjs/nw.js.svg" /></a>
<a href="https://www.anaconda.com/"><img alt="Python Version" src="https://img.shields.io/badge/Python-3.x-green.svg" /></a>
<a href="https://www.tensorflow.org/install"><img alt="TensorFlow Version" src="https://img.shields.io/badge/TensorFlow-1.13.1-red.svg" /></a>
<a href="https://github.com/SuperBruceJia/EEG-DL/blob/master/LICENSE"><img alt="MIT License" src="https://img.shields.io/badge/license-MIT-blue.svg" /></a>
</p>
<!-- <div align="center">
<a href="https://github.com/SuperBruceJia/EEG-DL"> <img width="500px" src="https://github.com/SuperBruceJia/EEG-DL/raw/master/Logo.png"></a>
</div> -->
--------------------------------------------------------------------------------
# Welcome to EEG Deep Learning Library
**EEG-DL** is a Deep Learning (DL) library written by [TensorFlow](https://www.tensorflow.org) for EEG Tasks (Signals) Classification. It provides the latest DL algorithms and keeps updated.
<!-- [![Gitter](https://img.shields.io/gitter/room/nwjs/nw.js.svg)](https://gitter.im/EEG-DL/community)
[![Python 3](https://img.shields.io/badge/Python-3.x-green.svg)](https://www.anaconda.com/)
[![TensorFlow 1.13.1](https://img.shields.io/badge/TensorFlow-1.13.1-red.svg)](https://www.tensorflow.org/install)
[![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/SuperBruceJia/EEG-DL/blob/master/LICENSE) -->
## Table of Contents
<ul>
<li><a href="#Documentation">Documentation</a></li>
<li><a href="#Usage-Demo">Usage Demo</a></li>
<li><a href="#Notice">Notice</a></li>
<li><a href="#Research-Ideas">Research Ideas</a></li>
<li><a href="#Common-Issues">Common Issues</a></li>
<li><a href="#Structure-of-the-code">Structure of the code</a></li>
<li><a href="#Citation">Citation</a></li>
<li><a href="#Other-Useful-Resources">Other Useful Resources</a></li>
<li><a href="#Contribution">Contribution</a></li>
<li><a href="#Organizations">Organizations</a></li>
</ul>
## Documentation
**The supported models** include
| No. | Model | Codes |
| :----:| :----: | :----: |
| 1 | Deep Neural Networks | [DNN](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/DNN.py) |
| 2 | Convolutional Neural Networks [[Paper]](https://iopscience.iop.org/article/10.1088/1741-2552/ab4af6/meta) [[Tutorial]](https://github.com/SuperBruceJia/EEG-Motor-Imagery-Classification-CNNs-TensorFlow)| [CNN](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/CNN.py) |
| 3 | Deep Residual Convolutional Neural Networks [[Paper]](https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf) | [ResNet](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/ResCNN.py) |
| 4 | Thin Residual Convolutional Neural Networks [[Paper]](https://arxiv.org/abs/1902.10107) | [Thin ResNet](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/Thin_ResNet.py) |
| 5 | Densely Connected Convolutional Neural Networks [[Paper]](https://arxiv.org/abs/1608.06993) | [DenseNet](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/DenseCNN.py) |
| 6 | Fully Convolutional Neural Networks [[Paper]](https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf) | [FCN](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/Fully_Conv_CNN.py) |
| 7 | One Shot Learning with Siamese Networks (CNNs Backbone) <br> [[Paper]](https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf) [[Tutorial]](https://towardsdatascience.com/one-shot-learning-with-siamese-networks-using-keras-17f34e75bb3d) | [Siamese Networks](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/Siamese_Network.py) |
| 8 | Graph Convolutional Neural Networks <br> [[Paper]](https://arxiv.org/abs/2006.08924) [[Presentation]](https://drive.google.com/file/d/1ecMbtZV2eH14sRAqWIIf1iRvDAC7DMDs/view?usp=sharing) [[Tutorial]](https://github.com/mdeff/cnn_graph) <br> [[GCN / GNN Summary for Chinese Readers]](https://github.com/wangyouze/GNN-algorithms) <br> [[GNN-related Algorithms Review for Chinese Readers]](https://github.com/LYuhang/GNN_Review) <br> [[Literature of Deep Learning for Graphs]](https://github.com/DeepGraphLearning/LiteratureDL4Graph) | [GCN / Graph CNN](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/lib_for_GCN/GCN_Model.py) |
| 9 | Graph Convolutional Neural Networks <br> (Pure Python Implementation from [Reza Amini](https://github.com/magnumical)) | [GCN / Graph CNN](https://github.com/magnumical/GCN_for_EEG) |
| 10 | Deep Residual Graph Convolutional Neural Networks [[Paper]](https://arxiv.org/abs/2007.13484) | [ResGCN](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/lib_for_GCN/ResGCN_Model.py) |
| 11 | Densely Connected Graph Convolutional Neural Networks | [DenseGCN](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/lib_for_GCN/DenseGCN_Model.py) |
| 12 | Bayesian Convolutional Neural Network <br> via Variational Inference <br> [[Paper]](https://arxiv.org/abs/1901.02731) [[Thesis]](https://github.com/kumar-shridhar/Master-Thesis-BayesianCNN/raw/master/thesis.pdf) <br> (PyTorch Implementation by [Kumar Shridhar](https://github.com/kumar-shridhar)) <br> [[Latest Codes]](https://github.com/kumar-shridhar/PyTorch-BayesianCNN) | [Bayesian CNNs](https://github.com/SuperBruceJia/EEG-BayesianCNN) |
| 13 | Recurrent Neural Networks [[Paper]](https://arxiv.org/abs/2005.00777) | [RNN](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/RNN.py) |
| 14 | Attention-based Recurrent Neural Networks [[Paper]](https://arxiv.org/abs/2005.00777) | [RNN with Attention](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/RNN_with_Attention.py) |
| 15 | Bidirectional Recurrent Neural Networks [[Paper]](https://arxiv.org/abs/2005.00777) | [BiRNN](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/BiRNN.py) |
| 16 | Attention-based Bidirectional Recurrent Neural Networks [[Paper]](https://arxiv.org/abs/2005.00777) | [BiRNN with Attention](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/BiRNN_with_Attention.py) |
| 17 | Long-short Term Memory [[Paper]](https://arxiv.org/abs/2005.00777) | [LSTM](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/LSTM.py) |
| 18 | Attention-based Long-short Term Memory [[Paper]](https://arxiv.org/abs/2005.00777) | [LSTM with Attention](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/LSTM_with_Attention.py) |
| 19 | Bidirectional Long-short Term Memory [[Paper]](https://arxiv.org/abs/2005.00777) | [BiLSTM](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/BiLSTM.py) |
| 20 | Attention-based Bidirectional Long-short Term Memory [[Paper]](https://arxiv.org/abs/2005.00777) | [BiLSTM with Attention](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/BiLSTM_with_Attention.py) |
| 21 | Gated Recurrent Unit [[Paper]](https://arxiv.org/abs/2005.00777) | [GRU](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/GRU.py) |
| 22 | Attention-based Gated Recurrent Unit [[Paper]](https://arxiv.org/abs/2005.00777) | [GRU with Attention](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/Network/GRU_with_Attention.py) |
| 23 | Bidirectional Gated Recurrent Unit [[Paper]](https://arxiv.org/abs/2005.00777) | [BiGRU](https://github.com/SuperBruceJia/EEG-DL/blob/master/Models/N
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
包含了所有脑电领域可能用到的深度学习模型包含BIGRU,,lstm,cnn,gcn,dnn,rnn等等23个深度学习模型。 同时包含了相应模型所需要的数据处理过程所用代码。 当然也包含了最基本的读取edf文件,得到脑电信号。
资源推荐
资源详情
资源评论
收起资源包目录
脑电模型 EEG models.zip (74个子文件)
脑电模型 EEG models
模型使用的简单说明.txt 0B
EEG-modles
EEG-DL-master
README.md 27KB
Saved_Files
README.md 74B
LICENSE 1KB
Download_Raw_EEG_Data
Extract-Raw-Data-Into-Matlab-Files.py 9KB
README.md 1KB
MIND_Get_EDF.py 1KB
electrode_positions.txt 2KB
Preprocess_EEG_Data
For-RNN-based-Models
make_dataset.m 3KB
For-CNN-based-Models
make_dataset.m 3KB
For-DNN-based-Models
make_dataset.m 3KB
For-GCN-based-Models
make_dataset.m 4KB
For-Siamese-Network-One-Shot-Learning
make_dataset.m 3KB
requirements.txt 62B
Draw_Photos
Draw_ROC_and_AUC.py 4KB
Draw_Loss_Photo.m 3KB
Draw_Confusion_Matrix.py 1KB
Draw_Box_Photo.m 7KB
figure_boxplot.m 20KB
Draw_Accuracy_Photo.m 3KB
MANIFEST.in 25B
setup.py 3KB
Models
main-LSTM.py 6KB
main-GCN.py 3KB
main-RNN.py 6KB
main-DNN.py 6KB
main-BiGRU-with-Attention.py 7KB
main-Thin-ResNet.py 5KB
main-LSTM-with-Attention.py 7KB
main-DenseCNN.py 5KB
DatasetAPI
DataLoader.py 2KB
main-GRU.py 6KB
main-FullyConvCNN.py 5KB
main-GRU-with-Attention.py 7KB
Loss_Function
Loss.py 851B
main-CNN.py 5KB
main-BiLSTM-with-Attention.py 7KB
main-ResCNN.py 5KB
main-BiGRU.py 6KB
main-Siamese-Network.py 7KB
main-BiRNN.py 6KB
__init__.py 217B
main-Transformer.py 3KB
Network
Thin_ResNet.py 6KB
DNN.py 1018B
GRU_with_Attention.py 6KB
BiGRU.py 2KB
RNN_with_Attention.py 6KB
BiLSTM.py 2KB
GRU.py 2KB
RNN.py 2KB
DenseCNN.py 4KB
LSTM.py 2KB
BiRNN_with_Attention.py 6KB
Siamese_Network.py 4KB
lib_for_GCN
DenseGCN_Model.py 30KB
coarsening.py 8KB
ResGCN_Model.py 32KB
graph.py 7KB
GCN_Model.py 42KB
BiRNN.py 2KB
BiLSTM_with_Attention.py 6KB
Fully_Conv_CNN.py 4KB
LSTM_with_Attention.py 6KB
ResCNN.py 5KB
BiGRU_with_Attention.py 6KB
CNN.py 4KB
main-RNN-with-Attention.py 7KB
main-DenseGCN.py 3KB
Evaluation_Metrics
Metrics.py 16KB
main-BiLSTM.py 6KB
Initialize_Variables
Initialize.py 366B
main-BiRNN-with-Attention.py 7KB
main-ResGCN.py 3KB
共 74 条
- 1
脑电情绪识别
- 粉丝: 1w+
- 资源: 34
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 几何物体检测44-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- 几何物体检测43-YOLO(v5至v9)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- 基于cruise的燃料电池功率跟随仿真,按照丰田氢能源车型搭建,在wltc工况下跟随效果好,最高车速175,最大爬坡30,百公里9s均已实现 1.模型通过cruise simulink联合仿真,策略
- C#源码 上位机 联合Visionpro 通用框架开发源码,已应用于多个项目,整套设备程序,可以根据需求编出来,具体Vpp功能自己编 程序包含功能 1.自动设置界面窗体个数及分布 2.照方式以命令触
- 程序名称:悬架设计计算程序 开发平台:基于matlab平台 计算内容:悬架偏频刚度挠度;螺旋弹簧,多片簧,少片簧,稳定杆,减震器的匹配计算;悬架垂向纵向侧向力学、纵倾、侧倾校核等;独立悬架杠杆比,等效
- 华为OD+真题及解析+智能驾驶
- jQuery信息提示插件
- 基于stm32的通信系统,sim800c与服务器通信,无线通信监测,远程定位,服务器通信系统,gps,sim800c,心率,温度,stm32 由STM32F103ZET6单片机核心板电路、DS18B2
- 充电器检测9-YOLO(v5至v11)、COCO、Create充电器检测9L、Paligemma、TFRecord、VOC数据集合集.rar
- 华为OD+考试真题+实现过程
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
- 1
- 2
- 3
- 4
- 5
- 6
前往页