[train hyper-parameters: Namespace(batch_size=8, epochs=50, freeze_layers=True, lr=0.0002, model='s')]
[epoch: 1]
train loss:0.3796 train accuracy:0.5761
val loss:0.3903 val accuracy:0.7697
[epoch: 2]
train loss:0.2947 train accuracy:0.8117
val loss:0.3599 val accuracy:0.7632
[epoch: 3]
train loss:0.2342 train accuracy:0.8234
val loss:0.3392 val accuracy:0.7829
[epoch: 4]
train loss:0.1918 train accuracy:0.8420
val loss:0.3189 val accuracy:0.8180
[epoch: 5]
train loss:0.1625 train accuracy:0.8583
val loss:0.3104 val accuracy:0.8377
[epoch: 6]
train loss:0.1414 train accuracy:0.8715
val loss:0.2999 val accuracy:0.8443
[epoch: 7]
train loss:0.1258 train accuracy:0.8776
val loss:0.2966 val accuracy:0.8706
[epoch: 8]
train loss:0.1154 train accuracy:0.8858
val loss:0.2905 val accuracy:0.8575
[epoch: 9]
train loss:0.1039 train accuracy:0.8942
val loss:0.2848 val accuracy:0.8706
[epoch: 10]
train loss:0.0986 train accuracy:0.8984
val loss:0.2859 val accuracy:0.8838
[epoch: 11]
train loss:0.0903 train accuracy:0.9042
val loss:0.2827 val accuracy:0.8838
[epoch: 12]
train loss:0.0852 train accuracy:0.9106
val loss:0.2800 val accuracy:0.8969
[epoch: 13]
train loss:0.0812 train accuracy:0.9144
val loss:0.2749 val accuracy:0.9035
[epoch: 14]
train loss:0.0782 train accuracy:0.9128
val loss:0.2717 val accuracy:0.9189
[epoch: 15]
train loss:0.0729 train accuracy:0.9242
val loss:0.2774 val accuracy:0.9057
[epoch: 16]
train loss:0.0696 train accuracy:0.9258
val loss:0.2776 val accuracy:0.9057
[epoch: 17]
train loss:0.0684 train accuracy:0.9244
val loss:0.2765 val accuracy:0.9189
[epoch: 18]
train loss:0.0661 train accuracy:0.9272
val loss:0.2742 val accuracy:0.9057
[epoch: 19]
train loss:0.0632 train accuracy:0.9300
val loss:0.2693 val accuracy:0.9211
[epoch: 20]
train loss:0.0603 train accuracy:0.9369
val loss:0.2739 val accuracy:0.9189
[epoch: 21]
train loss:0.0603 train accuracy:0.9319
val loss:0.2713 val accuracy:0.9123
[epoch: 22]
train loss:0.0581 train accuracy:0.9353
val loss:0.2730 val accuracy:0.9320
[epoch: 23]
train loss:0.0562 train accuracy:0.9364
val loss:0.2760 val accuracy:0.9276
[epoch: 24]
train loss:0.0569 train accuracy:0.9362
val loss:0.2725 val accuracy:0.9123
[epoch: 25]
train loss:0.0557 train accuracy:0.9356
val loss:0.2741 val accuracy:0.9342
[epoch: 26]
train loss:0.0536 train accuracy:0.9389
val loss:0.2700 val accuracy:0.9276
[epoch: 27]
train loss:0.0535 train accuracy:0.9436
val loss:0.2732 val accuracy:0.9342
[epoch: 28]
train loss:0.0505 train accuracy:0.9456
val loss:0.2709 val accuracy:0.9408
[epoch: 29]
train loss:0.0484 train accuracy:0.9492
val loss:0.2725 val accuracy:0.9408
[epoch: 30]
train loss:0.0490 train accuracy:0.9444
val loss:0.2719 val accuracy:0.9342
[epoch: 31]
train loss:0.0481 train accuracy:0.9458
val loss:0.2718 val accuracy:0.9342
[epoch: 32]
train loss:0.0490 train accuracy:0.9481
val loss:0.2730 val accuracy:0.9276
[epoch: 33]
train loss:0.0459 train accuracy:0.9494
val loss:0.2751 val accuracy:0.9276
[epoch: 34]
train loss:0.0453 train accuracy:0.9514
val loss:0.2764 val accuracy:0.9342
[epoch: 35]
train loss:0.0456 train accuracy:0.9506
val loss:0.2782 val accuracy:0.9342
[epoch: 36]
train loss:0.0448 train accuracy:0.9494
val loss:0.2773 val accuracy:0.9408
[epoch: 37]
train loss:0.0445 train accuracy:0.9494
val loss:0.2764 val accuracy:0.9342
[epoch: 38]
train loss:0.0449 train accuracy:0.9533
val loss:0.2756 val accuracy:0.9408
[epoch: 39]
train loss:0.0451 train accuracy:0.9558
val loss:0.2787 val accuracy:0.9342
[epoch: 40]
train loss:0.0437 train accuracy:0.9542
val loss:0.2816 val accuracy:0.9342
[epoch: 41]
train loss:0.0419 train accuracy:0.9569
val loss:0.2804 val accuracy:0.9342
[epoch: 42]
train loss:0.0421 train accuracy:0.9569
val loss:0.2833 val accuracy:0.9408
[epoch: 43]
train loss:0.0425 train accuracy:0.9550
val loss:0.2785 val accuracy:0.9408
[epoch: 44]
train loss:0.0412 train accuracy:0.9533
val loss:0.2739 val accuracy:0.9474
[epoch: 45]
train loss:0.0419 train accuracy:0.9531
val loss:0.2768 val accuracy:0.9342
[epoch: 46]
train loss:0.0397 train accuracy:0.9589
val loss:0.2799 val accuracy:0.9408
[epoch: 47]
train loss:0.0407 train accuracy:0.9584
val loss:0.2764 val accuracy:0.9342
[epoch: 48]
train loss:0.0395 train accuracy:0.9594
val loss:0.2801 val accuracy:0.9474
[epoch: 49]
train loss:0.0398 train accuracy:0.9600
val loss:0.2836 val accuracy:0.9408
[epoch: 50]
train loss:0.0403 train accuracy:0.9597
val loss:0.2758 val accuracy:0.9408
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
实现mobileViT的三个xxs、xs、s版本实现,框架为pytorch,数据集约为4k张图片 本项目运行了50个epoch,验证集得精度为0.94,在runs目录下有网络最好和最后得两个权重文件 损失函数为交叉熵损失、优化器为AdamW、评估指标为loss、acc、混淆矩阵、recall、precision、F1分数等等 *trian脚本用于训练(生成训练模型权重、loss、acc的曲线、可视化数据等等) *val脚本用于评估模型在测试集的性能,指标有混淆矩阵、recall、acc、precision、F1 score等等 *infer脚本用于推理单张图像 环境配置参考require文件,训练自定义数据集参考readme文件即可
资源推荐
资源详情
资源评论
收起资源包目录
基于pytorch实现的MobileViT 迁移学习对30种球类体育运动图像分类完整项目【毕业设计&课程设计&项目开发】 (2000个子文件)
test.jpg 68KB
009.jpg 50KB
46.jpg 47KB
48.jpg 45KB
096.jpg 44KB
62.jpg 42KB
010.jpg 42KB
080.jpg 42KB
131.jpg 41KB
068.jpg 41KB
053.jpg 40KB
022.jpg 40KB
030.jpg 39KB
081.jpg 39KB
100.jpg 38KB
097.jpg 38KB
2.jpg 38KB
116.jpg 38KB
4.jpg 38KB
017.jpg 38KB
011.jpg 38KB
049.jpg 38KB
109.jpg 37KB
24.jpg 37KB
4.jpg 37KB
017.jpg 37KB
003.jpg 37KB
64.jpg 37KB
022.jpg 37KB
016.jpg 36KB
3.jpg 36KB
03.jpg 36KB
028.jpg 36KB
15.jpg 36KB
093.jpg 36KB
029.jpg 36KB
022.jpg 36KB
015.jpg 36KB
36.jpg 36KB
11.jpg 36KB
029.jpg 36KB
121.jpg 35KB
21.jpg 35KB
79.jpg 35KB
16.jpg 35KB
13.jpg 35KB
020.jpg 35KB
002.jpg 35KB
009.jpg 35KB
43.jpg 34KB
159.jpg 34KB
14.jpg 34KB
042.jpg 34KB
114.jpg 34KB
007.jpg 34KB
145.jpg 34KB
132.jpg 34KB
089.jpg 34KB
49.jpg 34KB
106.jpg 34KB
5.jpg 34KB
13.jpg 34KB
100.jpg 34KB
4.jpg 34KB
011.jpg 34KB
12.jpg 34KB
85.jpg 34KB
015.jpg 34KB
127.jpg 33KB
006.jpg 33KB
072.jpg 33KB
021.jpg 33KB
018.jpg 33KB
026.jpg 33KB
3.jpg 33KB
71.jpg 33KB
006.jpg 33KB
032.jpg 33KB
30.jpg 33KB
49.jpg 33KB
081.jpg 33KB
77.jpg 33KB
128.jpg 33KB
048.jpg 33KB
1.jpg 33KB
078.jpg 33KB
86.jpg 33KB
2.jpg 33KB
067.jpg 33KB
035.jpg 33KB
3.jpg 32KB
014.jpg 32KB
089.jpg 32KB
101.jpg 32KB
66.jpg 32KB
107.jpg 32KB
072.jpg 32KB
071.jpg 32KB
044.jpg 32KB
081.jpg 32KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
Ai医学图像分割
- 粉丝: 2w+
- 资源: 2128
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- Python 模块和 IPython Notebooks,用于《Python 统计学入门》一书.zip
- Python 概览.zip
- 基于深度学习的火焰场景识别matlab仿真,包括程序,中文注释,仿真操作步骤
- 机械臂RLS控制程序matlab simulink
- bellsoft-jdk8u432+7-windows-amd64.msi
- android 移动应用与开发
- 运动物体识别 opencv python
- 技术资料分享uCOS-II信号量集很好的技术资料.zip
- 技术资料分享ucOS-II入门教程(任哲)很好的技术资料.zip
- 技术资料分享UCOSII 2.90 ReleaseNotes很好的技术资料.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功