<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
Run commands below to reproduce results
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Supervisely Ecosystem](https://github.com/ultralytics/yolov5/issues/2518) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments and Integrations</div>
Get started in seconds with our verified environments and integrations,
including [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) for automatic YOLOv5 experiment
logging. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov5/wiki/GCP-Qui
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于c++及OpenCV+pytorch+YOLO实现对微小零部件的内螺纹进行采集+处理和缺陷检测,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于c++及OpenCV+pytorch+YOLO实现对微小零部件的内螺纹进行采集+处理和缺陷检测,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于c++及OpenCV+pytorch+YOLO实现对微小零部件的内螺纹进行采集+处理和缺陷检测,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 项目简介: 以光学设备为基础,融合计算机视觉、深度学习等技术,对微小零部件的内螺纹进行采 集,处理和缺陷检测。 开发技术:c++,OpenCV,pytorch, YOLO。
资源推荐
资源详情
资源评论
收起资源包目录
基于c++及OpenCV+pytorch+YOLO实现对微小零部件的内螺纹进行采集+处理和缺陷检测(毕业设计&课程设计&项目开发 (232个子文件)
train.cache 332KB
train.cache 114KB
val.cache 81KB
splicing_lr.cpp 21KB
splicing_r.cpp 19KB
splicing_test.cpp 19KB
Tilt_correction.cpp 9KB
Expand.cpp 8KB
mirror_image.cpp 3KB
light.cpp 1KB
Dockerfile 2KB
Dockerfile 821B
.dockerignore 4KB
.gitattributes 75B
.gitignore 4KB
tutorial.ipynb 49KB
03.jpg 1.05MB
02.jpg 1.04MB
27.jpg 1.02MB
29.jpg 1MB
28.jpg 977KB
27_0.jpg 119KB
27_mix_row_0.jpg 117KB
27_1.jpg 115KB
02_9.jpg 113KB
02_mix_row_4.jpg 112KB
27_mix_row_1.jpg 111KB
29_mix_row_5.jpg 110KB
29_5.jpg 110KB
27_6.jpg 108KB
29_0.jpg 108KB
29_mix_row_4.jpg 107KB
29_mix_row_6.jpg 107KB
02_4.jpg 107KB
29_7.jpg 107KB
27_mix_row_6.jpg 107KB
29_1.jpg 106KB
27_mix_row_4.jpg 106KB
27_mix_row_5.jpg 106KB
29_6.jpg 106KB
27_2.jpg 106KB
29_mix_row_1.jpg 106KB
29_mix_row_7.jpg 106KB
27_mix_row_7.jpg 105KB
27_5.jpg 105KB
28_mix_row_5.jpg 105KB
27_7.jpg 105KB
29_mix_row_0.jpg 105KB
29_2.jpg 104KB
27_8.jpg 104KB
28_mix_row_2.jpg 104KB
29_mix_row_3.jpg 104KB
27_mix_row_2.jpg 104KB
02_mix_row_3.jpg 104KB
27_4.jpg 104KB
29_mix_row_2.jpg 104KB
29_4.jpg 104KB
27_3.jpg 104KB
02_mix_row_0.jpg 104KB
29_3.jpg 104KB
27_mix_row_3.jpg 103KB
28_1.jpg 103KB
28_2.jpg 103KB
28_5.jpg 103KB
29_8.jpg 102KB
27_mix_row_8.jpg 101KB
28_mix_row_1.jpg 101KB
28_mix_row_7.jpg 100KB
28_mix_row_0.jpg 100KB
28_8.jpg 100KB
28_3.jpg 100KB
28_6.jpg 100KB
28_mix_row_4.jpg 99KB
28_mix_row_3.jpg 99KB
02_3.jpg 99KB
28_mix_row_6.jpg 98KB
29_mix_row_8.jpg 98KB
27_9.jpg 98KB
28_7.jpg 98KB
28_4.jpg 98KB
28_0.jpg 97KB
29_9.jpg 97KB
28_mix_row_8.jpg 95KB
28_9.jpg 95KB
LICENSE 34KB
README.md 13KB
CONTRIBUTING.md 5KB
README.md 2KB
bug-report.md 1KB
feature-request.md 739B
README.md 211B
question.md 139B
datasets.py 41KB
train.py 31KB
general.py 30KB
tf.py 26KB
common.py 25KB
plots.py 18KB
val.py 16KB
detect.py 14KB
共 232 条
- 1
- 2
- 3
资源评论
梦回阑珊
- 粉丝: 5165
- 资源: 1673
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功