<div align="center">
<p>
<a href="https://github.com/ultralytics/assets/releases/tag/v8.2.0" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
</p>
[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [Türkçe](https://docs.ultralytics.com/tr/) | [Tiếng Việt](https://docs.ultralytics.com/vi/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/) <br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://codecov.io/github/ultralytics/ultralytics"><img src="https://codecov.io/github/ultralytics/ultralytics/branch/main/graph/badge.svg?token=HHW7IIVFVY" alt="Ultralytics Code Coverage"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<a href="https://ultralytics.com/discord"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
We hope that the resources here will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png" alt="YOLOv8 performance plots"></a>
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
## <div align="center">Documentation</div>
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
<details open>
<summary>Install</summary>
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
```bash
pip install ultralytics
```
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart).
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
</details>
<details open>
<summary>Usage</summary>
### CLI
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.
### Python
YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
model.train(data="coco8.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
path = model.export(format="onnx") #
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于YOLOV8 对混凝土裂缝(2类)的目标检测实战项目,包含代码、数据集,经测试,代码可以直接使用 【数据集介绍】2类别:裂缝、严重损伤。样本数(训练集900左右,验证集240左右) 训练自定义数据集摆放好数据后,更改mydata.yaml文件即可。训练或者推理的话,根据目标下编写的train和predict脚本实现即可。 关于yolov5改进介绍、或者如何训练,请参考: https://blog.csdn.net/qq_44886601/category_12605353.html yolov8训练数据的介绍: https://blog.csdn.net/qq_44886601/article/details/139810906
资源推荐
资源详情
资源评论
收起资源包目录
基于 yolov8 实现的对混凝土裂缝的检测项目实战(数据集+代码) (2000个子文件)
main.cc 10KB
CITATION.cff 764B
inference.cpp 13KB
inference.cpp 6KB
main.cpp 5KB
main.cpp 2KB
style.css 2KB
Dockerfile 4KB
Dockerfile-arm64 3KB
Dockerfile-conda 2KB
Dockerfile-cpu 3KB
Dockerfile-jetson-jetpack4 3KB
Dockerfile-jetson-jetpack5 3KB
Dockerfile-python 2KB
Dockerfile-runner 2KB
inference.h 2KB
inference.h 2KB
comments.html 2KB
main.html 904B
source-file.html 858B
tutorial.ipynb 36KB
object_tracking.ipynb 13KB
object_counting.ipynb 13KB
heatmaps.ipynb 11KB
hub.ipynb 5KB
imcontr195k_jpg.rf.2f56d42603e4af7090a317af874c52eb.jpg 47KB
imcontr261g_jpg.rf.30398984fa8f6cb1d501e4d26df9b3d6.jpg 42KB
accept167081_jpg.rf.676e586df3a1e1395005e2105a34e451.jpg 34KB
imcontr233g-2-_jpg.rf.766db27258b106d777be3593bf8eb5e0.jpg 34KB
imcontr281g_jpg.rf.4647a17dfe524d1f5fcd024f1b07f181.jpg 34KB
imcontr288g_jpg.rf.d46861b85daa439594c2eddfbdc39a0f.jpg 34KB
imcontr219g_jpg.rf.ae7fd7ba483a3d54c0a5144cd7467c6b.jpg 34KB
imcontr26g-4-_jpg.rf.e6d1fcc449a45445bad00741f1882c32.jpg 33KB
imcontr228g_jpg.rf.e3cb6bc11d3f58e064504397b627f510.jpg 33KB
imcontr244g_jpg.rf.0d2cb231d472da73377127c61e119e2e.jpg 32KB
imcontr237g-2-_jpg.rf.026136b14a27aca2e8b181f315de42d7.jpg 32KB
accept167078_jpg.rf.ee8f892f4f28c86c8f73528860ac5166.jpg 32KB
imcontr262g_jpg.rf.d4f929add31c08ef92e0716422c22909.jpg 31KB
imcontr262g_jpg.rf.98983694c0fe776f81f1b5e088406e00.jpg 31KB
imcontr251g_jpg.rf.07a73cce807c32fcb8feafdbfec2befa.jpg 31KB
imcontr25g-2-_jpg.rf.4d9c5930687298957d605aad98f4c736.jpg 31KB
accept080018_jpg.rf.2d3bc4ba660fb9e02a24ee3e1e93f389.jpg 30KB
imcontr269g-2-_jpg.rf.3534c54d094cb1d3d4c9e45235fa72cf.jpg 29KB
imcontr269g-2-_jpg.rf.f144f904c8087115a7527844c44e9ca7.jpg 29KB
imcontr239g-2-_jpg.rf.6600d1c2fa601e4a9528e5929146851e.jpg 29KB
imcontr211g_jpg.rf.bb6f2ad0484ee669e8af60046480df7a.jpg 28KB
accept080051_jpg.rf.0907194a718200b48ff53af556176826.jpg 28KB
accept080019_jpg.rf.f707faba5e93e3510922bb4f87673a78.jpg 28KB
imcontr246g-3-_jpg.rf.9aa2c4af64beec80dd2170e02eb0d945.jpg 28KB
imcontr275g-2-_jpg.rf.1df9535c74d12fc75bbfe4acb18aba1e.jpg 28KB
imcontr280g-2-_jpg.rf.6ceb44587cb2713e3092d64eee53941b.jpg 27KB
accept080024_jpg.rf.b9131d20e5f87df8330af01998ca1abb.jpg 27KB
imrot299g-2-_jpg.rf.3d4c140eff276991c9a383e078716cae.jpg 26KB
accept033058_jpg.rf.ab1027ac2d13a6b389a49250d35b6d8a.jpg 25KB
accept080041_jpg.rf.37bdcb9b22830561ce2575c56da15121.jpg 25KB
imrot252g_jpg.rf.bb4684587477bf69e6905e139ce12673.jpg 25KB
accept080042_jpg.rf.f54bf2f719e6bc00bf8a03ac3973f6e5.jpg 25KB
accept080034_jpg.rf.03de0da264de2bd27f1549fc65227af5.jpg 25KB
im263g-2-_jpg.rf.f0bcdebddb00b2dec3d67c92e78948b2.jpg 25KB
accept033085_jpg.rf.d92653cd444c57da411fc67ababa5922.jpg 25KB
im250g-3-_jpg.rf.e1101fa714e61c110b0853fb2281e9d1.jpg 25KB
im285g-2-_jpg.rf.7db146338e2abdbc76a4edbeb559286d.jpg 25KB
accept033048_jpg.rf.daaed5e4909df1690588ed1f288c1673.jpg 25KB
accept080050_jpg.rf.58aa87b18bc0dde6806fef63f9fd7cd4.jpg 25KB
accept033080_jpg.rf.66eda3b8be6b292807e817ae118aeac7.jpg 24KB
im251g_jpg.rf.7a01857ccb6c285dc9e11226c694c2be.jpg 24KB
im237g-2-_jpg.rf.03661b6b68ae9de7c80f7c836aaf499d.jpg 24KB
imrot260g-2-_jpg.rf.3400c4d4b2f68901d7a50a05e6927db3.jpg 24KB
accept033065_jpg.rf.cc6f0dbaa129e94cf51036be73fb78f6.jpg 24KB
accept080008_jpg.rf.449a243a0bbde8cc77ee762c171ea7b9.jpg 24KB
im270g_jpg.rf.50cda9c5bb67b8168aa7edb5de6ba9c8.jpg 24KB
accept033034_jpg.rf.d844a66577619bd15a930756d572b65a.jpg 24KB
im25g-2-_jpg.rf.9ae96537e43cf90bc84c3f0721ef7f5f.jpg 24KB
im282g-2-_jpg.rf.cc6273cc8a2c1184f76dbf05fed52a14.jpg 24KB
accept032073_jpg.rf.296ef863215f7325a9eca0f6102b0057.jpg 24KB
accept032069_jpg.rf.4c350a7f958dd434935d598a16545c2f.jpg 24KB
accept032088_jpg.rf.ce0550689403a76c951aecc6ea1d39e2.jpg 23KB
accept032094_jpg.rf.582645f05d1ad2c02a9b5402ab091d48.jpg 23KB
im269g-2-_jpg.rf.502f4fda24ee1bb4dddccda36895a45e.jpg 23KB
accept032082_jpg.rf.5f7077affccf8d428f36f11c138613c5.jpg 23KB
accept032084_jpg.rf.55f8b543890594d0124fca57f633467f.jpg 23KB
accept032042_jpg.rf.a510ad22ae60707d51c86a2b3414046b.jpg 23KB
accept032097_jpg.rf.c4ae900a1221f1f73afd1e8f93b98663.jpg 23KB
accept032055_jpg.rf.ae89ce5bd83302981c72a7eda60f05c1.jpg 22KB
accept032071_jpg.rf.a5b454e3c631c01ec51eb1f0c8ef4b03.jpg 22KB
accept032041_jpg.rf.f1b8d0690a86f6a5966135b64db8c638.jpg 22KB
im238g-2-_jpg.rf.2b21b6fab1a1912e8ddfda64d6f57005.jpg 22KB
im292g_jpg.rf.ededed3e09cdc1950ee227e8b155810d.jpg 22KB
im275g-2-_jpg.rf.7a4703ef43fbd33832110823cad74b24.jpg 22KB
7126-116_jpg.rf.352be4bb289019646586217109f137a4.jpg 22KB
accept032076_jpg.rf.077183e00c78785b856f67d170eeffc4.jpg 22KB
accept032099_jpg.rf.9aee677e245e6592e3fca307bd23e597.jpg 22KB
accept032087_jpg.rf.1e4ea8317b61c4a5f8934f83fc684b4c.jpg 21KB
accept032032_jpg.rf.227b3febb752c304d5bd2dbdefe8164a.jpg 21KB
accept033079_jpg.rf.1bb62c33d2ca74a0fecb48b4fccccdd8.jpg 21KB
accept021047_jpg.rf.ccb58b1237f70d7a7daa9c11ca08fb83.jpg 20KB
accept040086_jpg.rf.a75f4127620b99254c691a6ffc45526d.jpg 20KB
accept033078_jpg.rf.680fcb2f863810ce7ef2c9d675757126.jpg 20KB
accept092016_jpg.rf.4dd4b0fa90e15fe46b8387b2856fd37b.jpg 19KB
imrot266e_jpg.rf.1b861e84670a24162b82d87863938bc3.jpg 19KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
- weixin_490720032024-07-04果断支持这个资源,资源解决了当前遇到的问题,给了新的灵感,感谢分享~
Ai医学图像分割
- 粉丝: 2w+
- 资源: 2122
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功