<div align="center">
<p>
<a href="http://www.ultralytics.com/blog/ultralytics-yolov8-turns-one-a-year-of-breakthroughs-and-innovations" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
-->
</p>
[涓枃](https://docs.ultralytics.com/zh/) | [頃滉淡鞏碷(https://docs.ultralytics.com/ko/) | [鏃ユ湰瑾瀅(https://docs.ultralytics.com/ja/) | [袪褍褋褋泻懈泄](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Fran莽ais](https://docs.ultralytics.com/fr/) | [Espa帽ol](https://docs.ultralytics.com/es/) | [Portugu锚s](https://docs.ultralytics.com/pt/) | [啶灌た啶ㄠ啶︵](https://docs.ultralytics.com/hi/) | [丕賱毓乇亘賷丞](https://docs.ultralytics.com/ar/)
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
YOLOv5 馃殌 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 <a href="https://docs.ultralytics.com/yolov5">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/yolov5/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
<br>
## <div align="center">YOLOv8 馃殌 NEW</div>
We are thrilled to announce the launch of Ultralytics YOLOv8 馃殌, our NEW cutting-edge, state-of-the-art (SOTA) model released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
```bash
pip install ultralytics
```
<div align="center">
<a href="https://ultralytics.com/yolov8" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5) for full documentation on training, testing and deployment. See below for quickstart examples.
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.8.0**](https://www.python.org/) environment, including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details>
<summary>Inference</summary>
YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom
# Images
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于EfficientNet+yolov5融合改进对辣椒缺陷检测【包含数据集、代码、训练好的权重文件】。经测试,代码可以直接使用。 【yolov5】项目总大小:64 MB 本项目更换了yolov5骨干网络为官方实现的EfficientNet网络,简单训练了100个epoch,map指标为0.58,map0.5:0.95=0.52。这里仅仅训练了100个epoch用于测试,网络还没收敛,加大轮次可以获取更高的网络性能 【如何训练】和yolov5一样的训练方法,摆放好datasets数据,然后更改yaml文件中的类别信息即可训练 【数据集】(数据分为分为训练集和验证集) 训练集datasets-images-train:364张图片和364个标签txt文件组成 验证集datasets-images-val:88张图片和88个标签txt文件组成 更多yolov5改进介绍、或者如何训练,请参考: https://blog.csdn.net/qq_44886601/category_12605353.html
资源推荐
资源详情
资源评论
收起资源包目录
基于efficientnet+yolov5融合改进对辣椒缺陷检测【包含数据集、代码、训练好的权重文件】 (1196个子文件)
events.out.tfevents.1716706078.wmktz.7812.0 1.29MB
CITATION.cff 393B
results.csv 29KB
Dockerfile 3KB
Dockerfile 821B
Dockerfile-arm64 2KB
Dockerfile-cpu 2KB
.dockerignore 4KB
.gitattributes 75B
.gitignore 4KB
.gitignore 50B
yolov5.iml 452B
tutorial.ipynb 101KB
tutorial.ipynb 42KB
tutorial.ipynb 40KB
val_batch2_pred.jpg 708KB
val_batch1_pred.jpg 696KB
val_batch0_pred.jpg 651KB
val_batch2_labels.jpg 639KB
val_batch1_labels.jpg 612KB
val_batch0_labels.jpg 577KB
train_batch0.jpg 570KB
train_batch1.jpg 540KB
train_batch2.jpg 521KB
bus.jpg 476KB
labels_correlogram.jpg 235KB
zidane.jpg 165KB
labels.jpg 146KB
bbbb5423-dd88-4292-802f-3987f9e279a5_png.rf.c8f0c6b790a521f38071e142c8ed9fe5.jpg 133KB
fc882b7a-e5f7-4129-84f2-591089a46905_png.rf.e81e38e734876a6980b19be415cadfeb.jpg 126KB
ba3409de-2724-4411-9101-1f32b6d45c39_png.rf.0868f91c4baaca415db6e84bc3bb466d.jpg 125KB
c32563f5-882e-480a-a594-22d600a5db54_png.rf.67109e11f9661b86ac537a15728b3363.jpg 125KB
c49041fd-0aa9-44c5-a6ef-7aded1342a53_png.rf.f2a74d92f62ff413c88338a5921a75eb.jpg 125KB
f9caf835-e01a-470c-b6e6-b807d1e19f36_png.rf.d351c824ad591f68bfb84ae28d786400.jpg 123KB
c4368728-becd-44b8-afa3-9a00c07b627c_png.rf.96d08a7c415e3bca1b6c01b3731d8006.jpg 122KB
f077780a-5e78-42c0-be2d-7624ae87fbe1_png.rf.e2c1e2c808c52caa32252f4aa98d28fd.jpg 120KB
eca75c7b-7818-4abe-b518-21a0393d364a_png.rf.8bcebda0a64974385126430d3c683f8e.jpg 120KB
c4b78469-bfef-42e8-9ce8-ba3145505dc5_png.rf.336f4f26dc03bab413db3cce6c41d239.jpg 120KB
17224e31-4b1e-49fc-b78f-69a560f41fb2_png.rf.11837fe499b9c89b8a318ceb520ebd3e.jpg 120KB
cd760fa2-cb05-4f93-b5f1-76df06dc7244_png.rf.edcbb0cf16203c31f41f3f24b92df392.jpg 119KB
d128b2b1-71a8-40cb-9c78-e2f01f066d5c_png.rf.9245abf829d1289309ded2154f5fd23f.jpg 119KB
c2c756b6-08c7-47d0-b406-21d6fc5eb789_png.rf.2af12e5459c9e3576d7390f9a4b50403.jpg 119KB
be97f207-8c64-4b2c-b9e9-3dbe0600367c_png.rf.30e4fbf99ea36c4cf2c1180bdf9878de.jpg 118KB
ed6fdbc8-5cc5-4970-8d0e-0b7b63448322_png.rf.66def5d9a3118233386ba01a35adebd8.jpg 117KB
a7c46e06-ecf9-44e1-8b32-e88f0472bb54_png.rf.4cff6f4154adf963621be081b2f024fb.jpg 117KB
c84905e5-9d44-4473-b9e6-c3938d5fd38a_png.rf.e4e700f2ae581a74aff64711a6b061d3.jpg 116KB
72161e06-7336-4a68-9ca0-23f79d75dc74_png.rf.27491a60557cdd518c8704e3784d8e12.jpg 116KB
e6dc15de-acce-4e70-a1e5-6c4255fe814d_png.rf.0cb317bc44a9044d7a37ab903820dcf7.jpg 116KB
c765bcd3-a4d6-4d99-acfd-0dcda4b86e6e_png.rf.dd39ce3ca426d84f507c8eaf1a7560b3.jpg 116KB
c76a5ff6-0dd6-47b6-be2b-3ae5398dcd89_png.rf.de455bfaeb554cfcfebd60df2c3c4d49.jpg 115KB
ea8d21e5-8235-4d9f-bdc1-5a1bc977c090_png.rf.8b33c7cad403a940dd90be49ae2a6005.jpg 115KB
a8a12fa4-2190-486a-bd18-d03d77db6481_png.rf.2763c1c964715a2e3963e603cd81699d.jpg 115KB
f6404a11-c111-42c9-86a7-16215388ab2b_png.rf.e9b04f3272e9cebb98e3baaef3540966.jpg 115KB
f4f9378d-8b33-4a3d-993a-fd64b283cc08_png.rf.d59ecfa50326edf59b4b72c6c9006370.jpg 114KB
d9ee60fc-c15b-4023-99c4-0691bdb11196_png.rf.457e1fbe1988b00dde251a1398a2b6f2.jpg 114KB
f6db1520-422f-4e07-9805-64407b41217e_png.rf.057d7a23ebab3729250737316ef08fbf.jpg 114KB
ec283c93-91b9-4f7c-b88a-2d9ac8936157_png.rf.804d8f1fc1688707200abd2146fb0454.jpg 113KB
905839b3-1939-464b-8906-592ac95a4115_png.rf.a4cdc737410839053d1f98298dae2686.jpg 113KB
86589387-3b9c-4ca1-b671-292b420149da_png.rf.2c7068d72da6a8f400ee8c9ad0fe0a76.jpg 113KB
edc970c5-1bf5-47d3-81e2-2a622c3716d9_png.rf.c72f1851b51fa6e0ed621debb0b1631c.jpg 113KB
c8996e61-1d7c-4186-a79c-2df6ca6ef023_png.rf.704c9bfc3b9b8ea97f35c260fe0d2576.jpg 112KB
b322c3d7-9c29-40e5-916a-2f94fa60f05d_png.rf.ad0cedc2e1e48d190fccdf7fd8ad22f7.jpg 112KB
e73ea0fa-52c5-49a7-bc85-9281072342b0_png.rf.a3e1d25dfb3ce67d99f79b26b3f5ca9c.jpg 112KB
f504b1c0-b159-4aa7-89a0-02f5410e2224_png.rf.8f4060d6b97f201a1873fc94b077f1a2.jpg 112KB
b6ea3dbe-a447-4b65-b1d6-51a7998981e1_png.rf.93057fe023fa3bd148151ce1217e02fa.jpg 112KB
45896e0a-f5a1-4c32-a289-114f6f143df7_png.rf.293e2fd1390ecb69cb8ffb3d594d1428.jpg 112KB
588165d7-dc15-4256-9a02-bdb278c22c75_png.rf.4244f786dbdbb9a9bfd57393ac531d24.jpg 111KB
762365b8-7cae-44bc-bdd9-dbe6ee4d0f2b_png.rf.f5fb26691d74d415c20dbe2beef39135.jpg 111KB
c2739306-9ec6-4191-ad42-626736fbf305_png.rf.cb3231d4384323b31dce2d76b4888935.jpg 111KB
9728ad98-487b-4c8c-950e-0085916402cc_png.rf.5c92de2ec715a78feb3015f4540e0a98.jpg 111KB
f91ebf3f-543a-4b03-bb0e-edff7ba16cce_png.rf.11a6d1d4307532f35b879a1404bbe604.jpg 110KB
ec551668-dc7b-4292-a2d2-dddc91dff12f_png.rf.4dbbbcdacf2d26cb801123f2e2db4ed5.jpg 110KB
09841b67-03ec-4f27-a0e8-4aa564eb7fa8_png.rf.2b503e4ecceed21bd1d4e8a36f1f6167.jpg 109KB
b3135ed0-b3fd-4874-9a9f-368414ad200e_png.rf.61bab600b1976e5a3ee36d77fc2bc6b1.jpg 109KB
d9523332-b319-4cd6-8c32-ebe7d914ff32_png.rf.4ee8809d0019503b727d47c91fcead64.jpg 109KB
bf03abc6-a6d7-4aca-9dcd-8dcdbcff4571_png.rf.d95671dd09a372783a6b261e438dfe09.jpg 109KB
c3cef1f9-cf3b-4a4c-a925-69cdc7af4316_png.rf.d936506b24fc543bed4bcc24420ccec5.jpg 109KB
04784269-7623-4aae-9938-c92c7ac796fa_png.rf.6faefe2b66fbc4ef223b8840156455ad.jpg 108KB
e7ff5b49-6aa0-48cb-b364-d6beb5d96fd4_png.rf.be7575caeab7b799ee97f925051c8d7a.jpg 108KB
65805c69-98e3-42fa-9ee5-a1a9940b10ca_png.rf.ab36d2665153d1d4d85fcfd404130f03.jpg 108KB
a44b559e-07d2-498c-8b0e-5a6a12e049bb_png.rf.300a02774bdcd0e8283f2f621dcad52b.jpg 108KB
eff17d27-deb7-44aa-b212-dcc90ec99cc3_png.rf.62ad48718307c3b0e582507b27a80041.jpg 108KB
ef4ecf88-d64d-4725-9e14-2e94a22ec0bc_png.rf.3f4099fcb82948636099236631a43680.jpg 108KB
fcf87d16-7fb2-4f7d-b855-fc906a8aac68_png.rf.c6e9f9779d6b421008d9f01a5aa3e0eb.jpg 108KB
a6ed1459-a666-4c6e-9aae-7a40058103b2_png.rf.1c5b41763251f514ba16819dcbf98062.jpg 107KB
c6a7f695-6351-425c-8a33-4d6fc647ff76_png.rf.90d5a8d41eb012bfc9ccd8d53864b4e3.jpg 107KB
df793568-eb99-4c6b-957f-6fedd56d2b90_png.rf.4427517207548176ba0a7ea513feed63.jpg 107KB
cfde255e-311d-4a2d-8833-ffa08b04a68f_png.rf.3d9c84d753d3f1fd8ad31e5c4cb8f8db.jpg 107KB
d155f988-e081-43b9-953d-0c92c640a717_png.rf.d1307488236f9ca4e51ce8050b6eb4a2.jpg 106KB
efc44de5-3409-44f6-8715-2822b05daa1a_png.rf.74a8f4ca45774ea3ddf827342ec0269d.jpg 106KB
457777c4-2ade-4bfb-a7c5-3f979e49e806_png.rf.e20accf93f25fe92832d1e7e24e77ad9.jpg 106KB
e1c28eda-be55-444e-a402-35ff285e7b05_png.rf.13d45d2b4ec723bfafcb29457d0e34dc.jpg 105KB
bc777fec-18b2-4432-9625-b17d59e2e4dc_png.rf.5ce177e7f0fc7785400c2ac6d8cf2701.jpg 105KB
c834ff5a-e3ba-4458-b003-81c60aa7cbcf_png.rf.e5d08a0cea24f6a877e260b3de357942.jpg 105KB
a98a5b7d-af92-412f-819a-68c0e32e4997_png.rf.48d61047b3c04270e001dc2d21be81cd.jpg 103KB
42636154-25d0-4504-abc8-1fc79f114d14_png.rf.eccffce2001d0485b3f6c43ddc2b5303.jpg 103KB
f5c21842-c83d-42b1-a1df-218e1079e605_png.rf.154a406f3cbc8cc259fd608b984b89e2.jpg 103KB
b8168c09-2ec5-47fe-b20e-df3d66ec35cf_png.rf.bb60c58f7ac45488ad59b80b67c8d890.jpg 103KB
858568a5-3e72-4753-8f2b-e49fdbd15b6b_png.rf.be6b34aa2858ca41df2e562166a15a25.jpg 103KB
d0ec4637-7d58-4209-acd2-f4b706cc54b7_png.rf.83ab51f66901b247ec08f121aa5c36b6.jpg 102KB
共 1196 条
- 1
- 2
- 3
- 4
- 5
- 6
- 12
资源评论
- llz_4532024-06-06果断支持这个资源,资源解决了当前遇到的问题,给了新的灵感,感谢分享~
Ai医学图像分割
- 粉丝: 2w+
- 资源: 2128
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 鸟类目标检测数据集-含画眉鸟-百灵鸟xml文件数据集
- pyheif-0.8.0-cp37-cp37m-win-amd64.whl.zip
- 基于深度学习的鸟类种类目标检测-含数据集和训练代码-对百灵鸟-画眉鸟检测.zip
- pyheif-0.8.0-cp38-cp38-win-amd64.whl.zip
- pyheif-0.8.0-cp39-cp39-win-amd64.whl.zip
- pyheif-0.8.0-cp313-cp313-win-amd64.whl.zip
- MyBatis SQL mapper framework for Java.zip
- pyheif-0.8.0-cp312-cp312-win-amd64.whl.zip
- pyheif-0.8.0-cp311-cp311-win-amd64.whl.zip
- pyheif-0.8.0-cp310-cp310-win-amd64.whl.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功