<div align="center">
<p>
<a href="http://www.ultralytics.com/blog/ultralytics-yolov8-turns-one-a-year-of-breakthroughs-and-innovations" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
-->
</p>
[涓枃](https://docs.ultralytics.com/zh/) | [頃滉淡鞏碷(https://docs.ultralytics.com/ko/) | [鏃ユ湰瑾瀅(https://docs.ultralytics.com/ja/) | [袪褍褋褋泻懈泄](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Fran莽ais](https://docs.ultralytics.com/fr/) | [Espa帽ol](https://docs.ultralytics.com/es/) | [Portugu锚s](https://docs.ultralytics.com/pt/) | [啶灌た啶ㄠ啶︵](https://docs.ultralytics.com/hi/) | [丕賱毓乇亘賷丞](https://docs.ultralytics.com/ar/)
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
YOLOv5 馃殌 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 <a href="https://docs.ultralytics.com/yolov5">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/yolov5/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
<br>
## <div align="center">YOLOv8 馃殌 NEW</div>
We are thrilled to announce the launch of Ultralytics YOLOv8 馃殌, our NEW cutting-edge, state-of-the-art (SOTA) model released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
```bash
pip install ultralytics
```
<div align="center">
<a href="https://ultralytics.com/yolov8" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5) for full documentation on training, testing and deployment. See below for quickstart examples.
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.8.0**](https://www.python.org/) environment, including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details>
<summary>Inference</summary>
YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom
# Images
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于YOLOV5 对冬虫夏草生长检测(1类别)的目标检测实战项目,包含代码、数据集、训练好的权重参数,经测试,代码可以直接使用 图像分辨率为640*482的大分辨率RGB图片,数据集为土地刚生长的冬虫夏草检测,检测目标前景为冬虫夏草。标注的边界框完整,每张图像均有清晰目标。 【数据】(分为分为训练集和验证集) 训练集datasets-images-train:491张图片和491个标签txt文件组成 验证集datasets-images-val:122张图片和122个标签txt文件组成 【yolov5】项目总大小:189 MB 项目检测测试了20个epoch,在runs目录下保存了训练结果,训练最好的精度map0.5=0.96,map0.5:0.95=0.51。网络还没收敛,加大epoch可以得到更好的结果。 训练过程中会生成验证集的混淆矩阵,PR曲线、F1曲线等等 更多yolov5改进介绍、或者如何训练,请参考: https://blog.csdn.net/qq_44886601/category_12605353.html
资源推荐
资源详情
资源评论
收起资源包目录
YOLOV5 实战项目:冬虫夏草生长检测(1类别)【数据+代码+训练好的权重】 (1552个子文件)
events.out.tfevents.1715691330.sdxx-System-Product-Name.6098.0 906KB
runs.7z 47.83MB
CITATION.cff 393B
results.csv 6KB
Dockerfile 3KB
Dockerfile 821B
Dockerfile-arm64 2KB
Dockerfile-cpu 2KB
.dockerignore 4KB
.gitattributes 75B
.gitignore 4KB
.gitignore 50B
yolov5.iml 452B
tutorial.ipynb 101KB
tutorial.ipynb 42KB
tutorial.ipynb 40KB
image (71).jpg 1.04MB
image (72).jpg 835KB
train_batch0.jpg 795KB
val_batch1_pred.jpg 758KB
val_batch1_labels.jpg 752KB
image (79).jpg 743KB
train_batch1.jpg 716KB
train_batch2.jpg 698KB
image (77).jpg 640KB
image (69).jpg 625KB
val_batch2_pred.jpg 613KB
val_batch2_labels.jpg 609KB
image (78).jpg 572KB
image (71).jpg 559KB
val_batch0_pred.jpg 552KB
image (100).jpg 549KB
val_batch0_labels.jpg 547KB
image (76).jpg 490KB
image (70).jpg 484KB
bus.jpg 476KB
image (16).jpg 463KB
image (72).jpg 445KB
image (14).jpg 444KB
image (128).jpg 435KB
a4frame_000182.jpg 408KB
a4frame_000198.jpg 406KB
a4frame_000194.jpg 405KB
a4frame_000189.jpg 404KB
a4frame_000199.jpg 404KB
a4frame_000192.jpg 403KB
image (57).jpg 401KB
a4frame_000212.jpg 398KB
a4frame_000211.jpg 397KB
a4frame_000217.jpg 394KB
a4frame_000220.jpg 394KB
a4frame_000219.jpg 392KB
image (75).jpg 392KB
a4frame_000112.jpg 392KB
a4frame_000161.jpg 391KB
image (79).jpg 391KB
a4frame_000114.jpg 390KB
a4frame_000221.jpg 389KB
a4frame_000153.jpg 388KB
a4frame_000158.jpg 386KB
a4frame_000127.jpg 384KB
a4frame_000130.jpg 381KB
a4frame_000133.jpg 380KB
a4frame_000151.jpg 380KB
a4frame_000138.jpg 376KB
image (62).jpg 375KB
a4frame_000139.jpg 372KB
image (58).jpg 365KB
image (73).jpg 361KB
image (115).jpg 360KB
image (105).jpg 359KB
image (129).jpg 337KB
image (77).jpg 335KB
image (69).jpg 332KB
image (81).jpg 331KB
a8frame_000172.jpg 328KB
a8frame_000115.jpg 327KB
a8frame_000148.jpg 326KB
a8frame_000120.jpg 325KB
a8frame_000152.jpg 324KB
a8frame_000137.jpg 322KB
a8frame_000130.jpg 321KB
a8frame_000140.jpg 319KB
a8frame_000170.jpg 319KB
a8frame_000126.jpg 313KB
image (8).jpg 310KB
image (9).jpg 309KB
a8frame_000176.jpg 309KB
a13frame_000118.jpg 308KB
image (111).jpg 305KB
a8frame_000168.jpg 305KB
a8frame_000181.jpg 303KB
a8frame_000187.jpg 301KB
image (100).jpg 294KB
image (74).jpg 285KB
a13frame_000113.jpg 283KB
a25frame_000121.jpg 278KB
image (15).jpg 276KB
a13frame_000144.jpg 276KB
image (124).jpg 274KB
共 1552 条
- 1
- 2
- 3
- 4
- 5
- 6
- 16
资源评论
Ai医学图像分割
- 粉丝: 2w+
- 资源: 2089
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功