%% 清空环境变量
clc;
clear;
warning off
close all
%% 读取数据
res = xlsread('特征选择数据集.xlsx');
%% 分析数据
num_class = length(unique(res(:, end))); % 类别数(Excel最后一列放类别)
num_res = size(res, 1); % 样本数(每一行,是一个样本)
num_size = 0.7; % 训练集占数据集的比例
res = res(randperm(num_res), :); % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1; % 标志位为1,打开混淆矩阵(要求2018版本及以上)
%% 设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];
%% 划分数据集
for i = 1 : num_class
mid_res = res((res(:, end) == i), :); % 循环取出不同类别的样本
mid_size = size(mid_res, 1); % 得到不同类别样本个数
mid_tiran = round(num_size * mid_size); % 得到该类别的训练样本个数
P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)]; % 训练集输入
T_train = [T_train; mid_res(1: mid_tiran, end)]; % 训练集输出
P_test = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)]; % 测试集输入
T_test = [T_test; mid_res(mid_tiran + 1: end, end)]; % 测试集输出
end
%% 数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';
%% 得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test = T_test ;
%% 矩阵转置
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';
%% 特征选择
k = 10; % 保留特征个数
disp(['搜索:'])
disp(['https://mbd.pub/o/DDR1'])
%% 混淆矩阵
%%if flag_conusion == 1
%% figure
%% cm = confusionchart(T_train, T_sim1);
%% cm.Title = 'Confusion Matrix for Train Data';
%% cm.ColumnSummary = 'column-normalized';
%% cm.RowSummary = 'row-normalized';
%% figure
%% cm = confusionchart(T_test, T_sim2);
%% cm.Title = 'Confusion Matrix for Test Data';
%% cm.ColumnSummary = 'column-normalized';
%% cm.RowSummary = 'row-normalized';
%%end
没有合适的资源?快使用搜索试试~ 我知道了~
基于互信息MI(数据特征选择算法)的分类预测,多输入单输出模型 在概率论和信息论中,两个随机变量的互信息(Mutual In
共5个文件
m:4个
xlsx:1个
2星 需积分: 0 4 下载量 110 浏览量
2023-10-07
10:55:17
上传
评论
收藏 73KB ZIP 举报
温馨提示
基于互信息MI(数据特征选择算法)的分类预测,多输入单输出模型。 在概率论和信息论中,两个随机变量的互信息(Mutual Information,简称MI)或转移信息(transinformation)是变量间相互依赖性的量度。不同于相关系数,互信息并不局限于实值随机变量,它更加一般且决定着联合分布 p(X,Y) 和分解的边缘分布的乘积 p(X)p(Y) 的相似程度。互信息(Mutual Information)是度量两个事件集合之间的相关性(mutual dependence)。互信息是点间互信息(PMI)的期望值。互信息最常用的单位是bit。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图
资源推荐
资源详情
资源评论
收起资源包目录
3 MI互信息分类.zip (5个子文件)
MutualInfo.m 779B
main.m 2KB
特征选择数据集.xlsx 73KB
p_mkde.m 603B
mi_select.m 722B
共 5 条
- 1
资源评论
- (ง˙ω˙)ว2023-12-11一言难尽 #文件乱码
智能算法及其模型预测
- 粉丝: 2325
- 资源: 871
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功