function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)
%% 优化算法初始化
Alpha_pos = zeros(1, dim); % 初始化Alpha狼的位置
Alpha_score = inf; % 初始化Alpha狼的目标函数值,将其更改为-inf以解决最大化问题
Beta_pos = zeros(1, dim); % 初始化Beta狼的位置
Beta_score = inf; % 初始化Beta狼的目标函数值 ,将其更改为-inf以解决最大化问题
Delta_pos = zeros(1, dim); % 初始化Delta狼的位置
Delta_score = inf; % 初始化Delta狼的目标函数值,将其更改为-inf以解决最大化问题
%% 初始化搜索狼群的位置
Positions = initialization(SearchAgents_no, dim, ub, lb);
%% 用于记录迭代曲线
Convergence_curve = zeros(1, Max_iteration);
%% 循环计数器
iter = 0;
%% 优化算法主循环
while iter < Max_iteration % 对迭代次数循环
for i = 1 : size(Positions, 1) % 遍历每个狼
% 返回超出搜索空间边界的搜索狼群
% 若搜索位置超过了搜索空间,需要重新回到搜索空间
Flag4ub = Positions(i, :) > ub;
Flag4lb = Positions(i, :) < lb;
% 若狼的位置在最大值和最小值之间,则位置不需要调整,若超出最大值,最回到最大值边界
% 若超出最小值,最回答最小值边界
Positions(i, :) = (Positions(i, :) .* (~(Flag4ub + Flag4lb))) + ub .* Flag4ub + lb .* Flag4lb;
% 计算适应度函数值
% Positions(i, 2) = round(Positions(i, 2));
% fitness = fical(Positions(i, :));
fitness = fobj(Positions(i, :));
% 更新 Alpha, Beta, Delta
if fitness < Alpha_score % 如果目标函数值小于Alpha狼的目标函数值
Alpha_score = fitness; % 则将Alpha狼的目标函数值更新为最优目标函数值
Alpha_pos = Positions(i, :); % 同时将Alpha狼的位置更新为最优位置
end
if fitness > Alpha_score && fitness < Beta_score % 如果目标函数值介于于Alpha狼和Beta狼的目标函数值之间
Beta_score = fitness; % 则将Beta狼的目标函数值更新为最优目标函数值
Beta_pos = Positions(i, :); % 同时更新Beta狼的位置
end
if fitness > Alpha_score && fitness > Beta_score && fitness < Delta_score % 如果目标函数值介于于Beta狼和Delta狼的目标函数值之间
Delta_score = fitness; % 则将Delta狼的目标函数值更新为最优目标函数值
Delta_pos = Positions(i, :); % 同时更新Delta狼的位置
end
end
% 线性权重递减
wa = 2 - iter * ((2) / Max_iteration);
% 更新搜索狼群的位置
for i = 1 : size(Positions, 1) % 遍历每个狼
for j = 1 : size(Positions, 2) % 遍历每个维度
% 包围猎物,位置更新
r1 = rand; % r1 is a random number in [0,1]
r2 = rand; % r2 is a random number in [0,1]
A1 = 2 * wa * r1 - wa; % 计算系数A,Equation (3.3)
C1 = 2 * r2; % 计算系数C,Equation (3.4)
% Alpha 位置更新
D_alpha = abs(C1 * Alpha_pos(j) - Positions(i, j)); % Equation (3.5)-part 1
X1 = Alpha_pos(j) - A1 * D_alpha; % Equation (3.6)-part 1
r1 = rand; % r1 is a random number in [0,1]
r2 = rand; % r2 is a random number in [0,1]
A2 = 2 * wa * r1 - wa; % 计算系数A,Equation (3.3)
C2 = 2 *r2; % 计算系数C,Equation (3.4)
% Beta 位置更新
D_beta = abs(C2 * Beta_pos(j) - Positions(i, j)); % Equation (3.5)-part 2
X2 = Beta_pos(j) - A2 * D_beta; % Equation (3.6)-part 2
r1 = rand; % r1 is a random number in [0,1]
r2 = rand; % r2 is a random number in [0,1]
A3 = 2 *wa * r1 - wa; % 计算系数A,Equation (3.3)
C3 = 2 *r2; % 计算系数C,Equation (3.4)
% Delta 位置更新
D_delta = abs(C3 * Delta_pos(j) - Positions(i, j)); % Equation (3.5)-part 3
X3 = Delta_pos(j) - A3 * D_delta; % Equation (3.5)-part 3
% 位置更新
Positions(i, j) = (X1 + X2 + X3) / 3; % Equation (3.7)
end
end
% 更新迭代器
iter = iter + 1;
Convergence_curve(iter) = Alpha_score;
disp(['第',num2str(iter),'次迭代'])
disp(['current iteration is: ',num2str(iter), ', best fitness is: ', num2str(Alpha_score)]);
end
%% 记录最佳参数
% best_lr = Alpha_pos(1, 1);
% best_hd = Alpha_pos(1, 2);
% best_l2 = Alpha_pos(1, 3);
end
灰狼算法(GWO)优化BP神经网络回归预测,GWO-BP回归预测,多变量输入单输出模型 评价指标包括:R2、MAE、MSE、
需积分: 0 12 浏览量
更新于2023-09-15
3
收藏 35KB ZIP 举报
灰狼算法(Grey Wolf Optimizer, GWO)是一种模拟自然界中灰狼社会行为的优化算法,主要用于解决全局优化问题。该算法由Mirjalili等人在2014年提出,其核心思想是模拟灰狼群体中阿尔法(α)、贝塔(β)和德尔塔(δ)三种灰狼的角色来引导搜索过程,寻找问题的最优解。
BP(BackPropagation)神经网络是一种广泛应用的监督学习算法,常用于非线性回归和分类任务。它通过反向传播误差来调整网络权重,以最小化预测输出与实际目标之间的差异。在多变量输入单输出模型中,BP神经网络能够处理多个输入特征并预测一个单一的输出值。
GWO-BP回归预测是将灰狼算法应用于BP神经网络的训练过程,以优化网络的权重和偏置。这种结合提高了BP神经网络的收敛速度和预测精度,尤其是在处理复杂非线性关系时。
评价指标是衡量模型预测性能的关键。R2(决定系数)表示模型解释数据变异性的能力,值越接近1表示拟合度越好。MAE(平均绝对误差)是预测值与真实值之间差值的绝对值的平均,反映了模型预测的平均偏差。MSE(均方误差)是差值平方的平均,对大误差更敏感。RMSE(均方根误差)是MSE的平方根,与MAE相似,但更侧重于极端误差。MAPE(平均绝对百分比误差)是以百分比形式表示的平均误差,易于理解和比较不同量级的数据。
在提供的代码中,GWO.m可能实现了灰狼算法的核心逻辑,main.m可能是主程序,负责调用GWO并进行预测。getObjValue.m可能是计算模型预测误差的函数,初始化参数的工作可能在initialization.m中完成。data.xlsx文件则包含训练和测试数据,可能包括多变量输入和单输出的目标值。
学习和应用这些材料,你可以深入了解GWO优化算法和BP神经网络的结合,同时掌握如何使用它们来构建和评估多变量输入单输出的预测模型。这将有助于提升你在机器学习领域的技能,特别是在解决实际问题时选择和优化合适的算法。