# Unet-Segmentation-Pytorch-Nest-of-Unets
[![forthebadge](https://forthebadge.com/images/badges/made-with-python.svg)](https://www.python.org/)
[![HitCount](http://hits.dwyl.io/bigmb/Unet-Segmentation-Pytorch-Nest-of-Unets.svg)](http://hits.dwyl.io/bigmb/Unet-Segmentation-Pytorch-Nest-of-Unets)
[![License: MIT](https://img.shields.io/badge/License-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)
[![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-green.svg)](https://github.com/bigmb/Unet-Segmentation-Pytorch-Nest-of-Unets/graphs/commit-activity)
[![GitHub issues](https://img.shields.io/github/issues/Naereen/StrapDown.js.svg)](https://github.com/bigmb/Unet-Segmentation-Pytorch-Nest-of-Unets/issues)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/unet-a-nested-u-net-architecture-for-medical/semantic-segmentation-on-cityscapes-val)](https://paperswithcode.com/sota/semantic-segmentation-on-cityscapes-val?p=unet-a-nested-u-net-architecture-for-medical)
Implementation of different kinds of Unet Models for Image Segmentation
1) **UNet** - U-Net: Convolutional Networks for Biomedical Image Segmentation
https://arxiv.org/abs/1505.04597
2) **RCNN-UNet** - Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation
https://arxiv.org/abs/1802.06955
3) **Attention Unet** - Attention U-Net: Learning Where to Look for the Pancreas
https://arxiv.org/abs/1804.03999
4) **RCNN-Attention Unet** - Attention R2U-Net : Just integration of two recent advanced works (R2U-Net + Attention U-Net)
<!--LeeJun Implementation - https://github.com/LeeJunHyun/Image_Segmentation.git -->
5) **Nested UNet** - UNet++: A Nested U-Net Architecture for Medical Image Segmentation
https://arxiv.org/abs/1807.10165
With Layer Visualization
## 1. Getting Started
Clone the repo:
```bash
git clone https://github.com/bigmb/Unet-Segmentation-Pytorch-Nest-of-Unets.git
```
## 2. Requirements
```
python>=3.6
torch>=0.4.0
torchvision
torchsummary
tensorboardx
natsort
numpy
pillow
scipy
scikit-image
sklearn
```
Install all dependent libraries:
```bash
pip install -r requirements.txt
```
## 3. Run the file
Add all your folders to this line 106-113
```
t_data = '' # Input data
l_data = '' #Input Label
test_image = '' #Image to be predicted while training
test_label = '' #Label of the prediction Image
test_folderP = '' #Test folder Image
test_folderL = '' #Test folder Label for calculating the Dice score
```
## 4. Types of Unet
**Unet**
![unet1](/images/unet1.png)
**RCNN Unet**
![r2unet](/images/r2unet.png)
**Attention Unet**
![att-unet](/images/att-unet.png)
**Attention-RCNN Unet**
![att-r2u](/images/att-r2u.png)
**Nested Unet**
![nested](/images/nested.jpg)
## 5. Visualization
To plot the loss , Visdom would be required. The code is already written, just uncomment the required part.
Gradient flow can be used too. Taken from (https://discuss.pytorch.org/t/check-gradient-flow-in-network/15063/10)
A model folder is created and all the data is stored inside that.
Last layer will be saved in the model folder. If any particular layer is required , mention it in the line 361.
**Layer Visulization**
![l2](/images/l2.png)
**Filter Visulization**
![filt1](/images/filt1.png)
**TensorboardX**
Still have to tweak some parameters to get visualization. Have messed up this trying to make pytorch 1.1.0 working with tensorboard directly (and then came to know Currently it doesn't support anything apart from linear graphs)
<img src="https://github.com/bigmb/Unet-Segmentation-Pytorch-Nest-of-Unets/blob/master/images/tensorb.png" width="280">
**Input Image Visulization for checking**
**a) Original Image**
<img src="https://github.com/bigmb/Unet-Segmentation-Pytorch-Nest-of-Unets/blob/master/images/in1.png" width="480">
**b) CenterCrop Image**
<img src="https://github.com/bigmb/Unet-Segmentation-Pytorch-Nest-of-Unets/blob/master/images/in2.png" width="480">
## 6. Results
**Dice Score for hippocampus segmentation**
ADNI-LONI Dataset
<img src="https://github.com/bigmb/Unet-Segmentation-Pytorch-Nest-of-Unets/blob/master/dice.png" width="380">
## 7. Citation
If you find it usefull for your work.
```
@article{DBLP:journals/corr/abs-1906-07160,
author = {Malav Bateriwala and
Pierrick Bourgeat},
title = {Enforcing temporal consistency in Deep Learning segmentation of brain
{MR} images},
journal = {CoRR},
volume = {abs/1906.07160},
year = {2019},
url = {http://arxiv.org/abs/1906.07160},
archivePrefix = {arXiv},
eprint = {1906.07160},
timestamp = {Mon, 24 Jun 2019 17:28:45 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1906-07160},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
## 8. Blog about different Unets
```
In progress
```
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
不同类型的图像分割Unet模型的实现 UNet - U-Net:用于生物医学图像分割的卷积网络 https://arxiv.org/abs/1505.04597 RCNN-UNet - 基于 U-Net (R2U-Net) 的循环残差卷积神经网络,用于医学图像分割 https://arxiv.org/abs/1802.06955 注意 Unet - 注意 U-Net:学习在哪里寻找胰腺 https://arxiv.org/abs/1804.03999 RCNN-Attention Unet - Attention R2U-Net :仅集成两个最近的先进作品(R2U-Net + Attention U-Net) 嵌套 UNet - UNet++:用于医学图像分割的嵌套 U-Net 架构 https://arxiv.org/abs/1807.10165 具有图层可视化功能 pip install -r requirements.txt t_data = '' # Input data l_data = '' #Input Label test_image = '' #Image
资源推荐
资源详情
资源评论
收起资源包目录
不同类型的图像分割Unet模型的实现.zip (49个子文件)
不同类型的图像分割Unet模型的实现
losses.py 2KB
Models.py 25KB
LICENSE 1KB
Data_Loader.py 4KB
.git
index 2KB
HEAD 23B
refs
heads
master 41B
tags
remotes
origin
HEAD 32B
objects
pack
pack-c359b1b9ce8a1535af569bb4a2039e3bdcbad093.idx 7KB
pack-c359b1b9ce8a1535af569bb4a2039e3bdcbad093.pack 621KB
info
description 73B
packed-refs 272B
info
exclude 240B
logs
HEAD 204B
refs
heads
master 204B
remotes
origin
HEAD 204B
hooks
post-update.sample 189B
prepare-commit-msg.sample 1KB
commit-msg.sample 896B
pre-receive.sample 544B
update.sample 4KB
pre-commit.sample 2KB
pre-rebase.sample 5KB
applypatch-msg.sample 478B
fsmonitor-watchman.sample 5KB
push-to-checkout.sample 3KB
pre-applypatch.sample 424B
pre-push.sample 1KB
pre-merge-commit.sample 416B
config 313B
pytorch_run.py 18KB
CODE_OF_CONDUCT.md 3KB
Metrics.py 1KB
dice.png 11KB
requirements.txt 122B
images
nested.jpg 39KB
in2.png 33KB
unet1.png 101KB
l2.png 10KB
in1.png 37KB
att-unet.png 184KB
tensorb.png 35KB
att-r2u.png 63KB
r2unet.png 65KB
filt1.png 7KB
pytorch_run_old.py 19KB
README.md 5KB
2d_from_3d.py 1KB
ploting.py 6KB
共 49 条
- 1
资源评论
Omer_
- 粉丝: 3057
- 资源: 31
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于javaweb的小说网站系统毕业论文.doc
- 这款创意新年贺卡设计适合送给亲友,包含多种风格,用户可以根据需要进行修改和打印 新春大屏祝福的效果 这个示例使用了HTML和CSS来创建一个全屏的祝福页面,您可以根据需要进行修改和扩展
- 基于java的酒店管理系统.doc
- 截图,代码 ,生成库文件等等 ppp
- 基于事件的网络舆情分析系统源码+项目说明(高分项目)
- 基于web的企业人事信息管理论文.doc
- MFC多工具栏如何保存状态(续)
- Python基于事件的网络舆情分析系统源码+项目说明(高分项目)
- 基于SSH网上体育用品销售系统开发与设计毕业设计论文.doc
- 基于JAVA的文章发布系统的设计与实现论文.doc
- 【vue框架开发】html中实现vue响应式表单组件
- 基于ssh校园门户网站毕业论文.doc
- 线性调频脉冲回波信号的仿真matlab
- 高校社团管理系统基于Java技术的设计与实现
- JavaScript常见函数
- 酒装箱输送线 sw18全套技术开发资料100%好用.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功