# Multi-Object Tracking with Ultralytics YOLO
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418637-1d6250fd-1515-4c10-a844-a32818ae6d46.png" alt="YOLOv8 trackers visualization">
Object tracking in the realm of video analytics is a critical task that not only identifies the location and class of objects within the frame but also maintains a unique ID for each detected object as the video progresses. The applications are limitless—ranging from surveillance and security to real-time sports analytics.
## Why Choose Ultralytics YOLO for Object Tracking?
The output from Ultralytics trackers is consistent with standard object detection but has the added value of object IDs. This makes it easy to track objects in video streams and perform subsequent analytics. Here's why you should consider using Ultralytics YOLO for your object tracking needs:
- **Efficiency:** Process video streams in real-time without compromising accuracy.
- **Flexibility:** Supports multiple tracking algorithms and configurations.
- **Ease of Use:** Simple Python API and CLI options for quick integration and deployment.
- **Customizability:** Easy to use with custom trained YOLO models, allowing integration into domain-specific applications.
**Video Tutorial:** [Object Detection and Tracking with Ultralytics YOLOv8](https://www.youtube.com/embed/hHyHmOtmEgs?si=VNZtXmm45Nb9s-N-).
## Features at a Glance
Ultralytics YOLO extends its object detection features to provide robust and versatile object tracking:
- **Real-Time Tracking:** Seamlessly track objects in high-frame-rate videos.
- **Multiple Tracker Support:** Choose from a variety of established tracking algorithms.
- **Customizable Tracker Configurations:** Tailor the tracking algorithm to meet specific requirements by adjusting various parameters.
## Available Trackers
Ultralytics YOLO supports the following tracking algorithms. They can be enabled by passing the relevant YAML configuration file such as `tracker=tracker_type.yaml`:
- [BoT-SORT](https://github.com/NirAharon/BoT-SORT) - Use `botsort.yaml` to enable this tracker.
- [ByteTrack](https://github.com/ifzhang/ByteTrack) - Use `bytetrack.yaml` to enable this tracker.
The default tracker is BoT-SORT.
## Tracking
To run the tracker on video streams, use a trained Detect, Segment or Pose model such as YOLOv8n, YOLOv8n-seg and YOLOv8n-pose.
#### Python
```python
from ultralytics import YOLO
# Load an official or custom model
model = YOLO("yolov8n.pt") # Load an official Detect model
model = YOLO("yolov8n-seg.pt") # Load an official Segment model
model = YOLO("yolov8n-pose.pt") # Load an official Pose model
model = YOLO("path/to/best.pt") # Load a custom trained model
# Perform tracking with the model
results = model.track(
source="https://youtu.be/LNwODJXcvt4", show=True
) # Tracking with default tracker
results = model.track(
source="https://youtu.be/LNwODJXcvt4", show=True, tracker="bytetrack.yaml"
) # Tracking with ByteTrack tracker
```
#### CLI
```bash
# Perform tracking with various models using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" # Official Detect model
yolo track model=yolov8n-seg.pt source="https://youtu.be/LNwODJXcvt4" # Official Segment model
yolo track model=yolov8n-pose.pt source="https://youtu.be/LNwODJXcvt4" # Official Pose model
yolo track model=path/to/best.pt source="https://youtu.be/LNwODJXcvt4" # Custom trained model
# Track using ByteTrack tracker
yolo track model=path/to/best.pt tracker="bytetrack.yaml"
```
As can be seen in the above usage, tracking is available for all Detect, Segment and Pose models run on videos or streaming sources.
## Configuration
### Tracking Arguments
Tracking configuration shares properties with Predict mode, such as `conf`, `iou`, and `show`. For further configurations, refer to the [Predict](https://docs.ultralytics.com/modes/predict/) model page.
#### Python
```python
from ultralytics import YOLO
# Configure the tracking parameters and run the tracker
model = YOLO("yolov8n.pt")
results = model.track(
source="https://youtu.be/LNwODJXcvt4", conf=0.3, iou=0.5, show=True
)
```
#### CLI
```bash
# Configure tracking parameters and run the tracker using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" conf=0.3, iou=0.5 show
```
### Tracker Selection
Ultralytics also allows you to use a modified tracker configuration file. To do this, simply make a copy of a tracker config file (for example, `custom_tracker.yaml`) from [ultralytics/cfg/trackers](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/trackers) and modify any configurations (except the `tracker_type`) as per your needs.
#### Python
```python
from ultralytics import YOLO
# Load the model and run the tracker with a custom configuration file
model = YOLO("yolov8n.pt")
results = model.track(
source="https://youtu.be/LNwODJXcvt4", tracker="custom_tracker.yaml"
)
```
#### CLI
```bash
# Load the model and run the tracker with a custom configuration file using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" tracker='custom_tracker.yaml'
```
For a comprehensive list of tracking arguments, refer to the [ultralytics/cfg/trackers](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/trackers) page.
## Python Examples
### Persisting Tracks Loop
Here is a Python script using OpenCV (`cv2`) and YOLOv8 to run object tracking on video frames. This script still assumes you have already installed the necessary packages (`opencv-python` and `ultralytics`). The `persist=True` argument tells the tracker than the current image or frame is the next in a sequence and to expect tracks from the previous image in the current image.
#### Python
```python
import cv2
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("yolov8n.pt")
# Open the video file
video_path = "path/to/video.mp4"
cap = cv2.VideoCapture(video_path)
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if success:
# Run YOLOv8 tracking on the frame, persisting tracks between frames
results = model.track(frame, persist=True)
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Tracking", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
```
Please note the change from `model(frame)` to `model.track(frame)`, which enables object tracking instead of simple detection. This modified script will run the tracker on each frame of the video, visualize the results, and display them in a window. The loop can be exited by pressing 'q'.
### Plotting Tracks Over Time
Visualizing object tracks over consecutive frames can provide valuable insights into the movement patterns and behavior of detected objects within a video. With Ultralytics YOLOv8, plotting these tracks is a seamless and efficient process.
In the following example, we demonstrate how to utilize YOLOv8's tracking capabilities to plot the movement of detected objects across multiple video frames. This script involves opening a video file, reading it frame by frame, and utilizing the YOLO model to identify and track various objects. By retaining the center points of the detected bounding boxes and connecting them, we can draw lines that represent the paths followed by the tracked objects.
#### Python
```python
from collections import defaultdict
import cv2
import numpy as np
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("y
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv10:实时端到端目标检测 (576个子文件)
main.cc 10KB
CNAME 21B
inference.cpp 13KB
inference.cpp 6KB
main.cpp 5KB
main.cpp 2KB
style.css 1KB
yolov10n.csv 235KB
yolov10m.csv 235KB
yolov10l.csv 235KB
yolov10s.csv 235KB
yolov10b.csv 235KB
yolov10x.csv 235KB
Dockerfile 4KB
Dockerfile-arm64 2KB
Dockerfile-conda 2KB
Dockerfile-cpu 3KB
Dockerfile-jetson 2KB
Dockerfile-python 2KB
Dockerfile-runner 2KB
.gitignore 2KB
inference.h 2KB
inference.h 2KB
comments.html 2KB
source-file.html 858B
main.html 439B
favicon.ico 9KB
tutorial.ipynb 35KB
explorer.ipynb 22KB
object_tracking.ipynb 8KB
object_counting.ipynb 6KB
heatmaps.ipynb 6KB
hub.ipynb 4KB
bus.jpg 134KB
zidane.jpg 49KB
extra.js 3KB
LICENSE 34KB
predict.md 47KB
cfg.md 42KB
train.md 28KB
model-deployment-options.md 23KB
yolov8.md 20KB
openvino.md 20KB
quickstart.md 19KB
yolo-common-issues.md 17KB
train_custom_data.md 17KB
track.md 16KB
roboflow.md 16KB
model_export.md 15KB
heatmaps.md 15KB
inference-api.md 15KB
isolating-segmentation-objects.md 15KB
pytorch_hub_model_loading.md 14KB
simple-utilities.md 14KB
README.md 13KB
sam.md 13KB
yolo-world.md 13KB
pose.md 12KB
kfold-cross-validation.md 12KB
yolov9.md 12KB
python.md 12KB
architecture_description.md 12KB
object-counting.md 12KB
CI.md 12KB
obb.md 12KB
api.md 12KB
segment.md 12KB
yolo-performance-metrics.md 11KB
multi_gpu_training.md 11KB
projects.md 11KB
classify.md 11KB
detect.md 11KB
hyperparameter_evolution.md 11KB
clearml_logging_integration.md 11KB
ray-tune.md 11KB
comet_logging_integration.md 11KB
neural_magic_pruning_quantization.md 11KB
test_time_augmentation.md 11KB
yolov5.md 11KB
tensorboard.md 10KB
amazon-sagemaker.md 10KB
index.md 10KB
clearml.md 10KB
model_ensembling.md 10KB
android.md 10KB
running_on_jetson_nano.md 10KB
weights-biases.md 10KB
index.md 10KB
fast-sam.md 10KB
hyperparameter-tuning.md 10KB
index.md 10KB
cli.md 9KB
workouts-monitoring.md 9KB
torchscript.md 9KB
dvc.md 9KB
export.md 9KB
index.md 9KB
neural-magic.md 9KB
comet.md 9KB
vision-eye.md 9KB
共 576 条
- 1
- 2
- 3
- 4
- 5
- 6
资源评论
Java程序员-张凯
- 粉丝: 1w+
- 资源: 7450
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 5A90铝锂合金电子束焊接接头显微分析 - .pdf
- 5E83铝合金TIG焊接头残余应力分布研究 - .pdf
- 5万m-3LNG储罐9 Ni钢内罐焊接技术.pdf
- 6mm不锈钢对接焊接接头超声检测探讨.pdf
- 07MnNiVDR钢焊接热影响区再热脆化研究 - .pdf
- 07钢管相贯节点焊接缺陷类型及对极限承载力的影响.pdf
- 7A05铝合金激光-MIG复合焊接头组织分析 - .pdf
- 08Cr2AIMoSi板材焊接冷裂纹敏感性及焊后热处理试验.pdf
- 7N01-T4铝合金搅拌摩擦焊接头的组织和耐应力腐蚀性能 - .pdf
- 7N01铝合金焊接接头力学性能及静/动态失效分析 - .pdf
- 08采用冷轧带肋钢筋焊接网的抗震墙性能研究.pdf
- 8轴激光焊接实验平台的有限元分析及优化设计.pdf
- 09CrCuSb钢焊接材料选定及其焊接工艺 - .pdf
- 09MnNiDR低温钢的焊接工艺评定.pdf
- 09MnNiDR低温容器的焊接及热处理研究 - .pdf
- 09MnNiDR低温钢焊接性分析 - .pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功