<a href="https://apps.apple.com/app/id1452689527" target="_blank">
<img src="https://user-images.githubusercontent.com/26833433/98699617-a1595a00-2377-11eb-8145-fc674eb9b1a7.jpg" width="1000"></a>
 
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
<img src="https://user-images.githubusercontent.com/26833433/103594689-455e0e00-4eae-11eb-9cdf-7d753e2ceeeb.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
- **January 5, 2021**: [v4.0 release](https://github.com/ultralytics/yolov5/releases/tag/v4.0): nn.SiLU() activations, [Weights & Biases](https://wandb.ai/) logging, [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/) integration.
- **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
- **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
- **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: new heads, reduced parameters, improved speed and mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972).
- **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
## Pretrained Checkpoints
| Model | size | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>V100</sub> | FPS<sub>V100</sub> || params | GFLOPS |
|---------- |------ |------ |------ |------ | -------- | ------| ------ |------ | :------: |
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases) |640 |36.8 |36.8 |55.6 |**2.2ms** |**455** ||7.3M |17.0
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases) |640 |44.5 |44.5 |63.1 |2.9ms |345 ||21.4M |51.3
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases) |640 |48.1 |48.1 |66.4 |3.8ms |264 ||47.0M |115.4
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases) |640 |**50.1** |**50.1** |**68.7** |6.0ms |167 ||87.7M |218.8
| | | | | | | || |
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases) + TTA |832 |**51.9** |**51.9** |**69.6** |24.9ms |40 ||87.7M |1005.3
<!---
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases) |640 |49.0 |49.0 |67.4 |4.1ms |244 ||77.2M |117.7
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases) |1280 |53.0 |53.0 |70.8 |12.3ms |81 ||77.2M |117.7
--->
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
** All AP numbers are for single-model single-scale without ensemble or TTA. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
** Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes image preprocessing, FP16 inference, postprocessing and NMS. NMS is 1-2ms/img. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
** Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) runs at 3 image sizes. **Reproduce TTA** by `python test.py --data coco.yaml --img 832 --iou 0.65 --augment`
## Requirements
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
```bash
$ pip install -r requirements.txt
```
## Tutorials
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
## Environments
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
## Inference
detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
rtmp://192.168.1.105/live/test # rtmp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
```
To run inference on example images in `data/images`:
```bash
$ python detect.py --source data/images --weights yolov5s.pt --conf 0.25
Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', exist_ok=False, img_size=640, iou_thres=0.45, name='exp', project='runs/detect', save_conf=False, save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])
YOLOv5 v4.0-96-g83dc1b4 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB
没有合适的资源?快使用搜索试试~ 我知道了~
改进版的yolov5+双目测距
共120个文件
pyc:45个
py:31个
yaml:24个
5星 · 超过95%的资源 需积分: 0 574 下载量 195 浏览量
2022-12-01
11:22:00
上传
评论 20
收藏 71.18MB ZIP 举报
温馨提示
新版本代码特点:(注意目前只适用于2560*720分辨率的双目,其他分辨率需要修改) 1、替换“回”字形查找改为“米”字形查找,可以设置存储像素点的个数20可修改,然后取有效像素点的中位数(个人觉得比平均值更有代表性)。 2、每10帧(约1/3秒)双目匹配一次,提升代码的运行速度。 3、可以进行实时检测,运行速度与机器的性能有关。
资源推荐
资源详情
资源评论
收起资源包目录
改进版的yolov5+双目测距 (120个子文件)
Dockerfile 2KB
Dockerfile 821B
tutorial.ipynb 384KB
bus.jpg 476KB
zidane.jpg 165KB
LICENSE 34KB
README.md 11KB
gym_001.mov 31.95MB
yolov5s.pt 14.11MB
last_person_1000.pt 13.73MB
last_person_300.pt 13.72MB
datasets.py 43KB
train.py 32KB
detect_and_stereo_video_033.py 31KB
detect_and_stereo_video_030.py 29KB
general.py 23KB
plots.py 18KB
test.py 16KB
common.py 13KB
stereo.py 12KB
yolo.py 12KB
torch_utils.py 12KB
loss.py 9KB
metrics.py 9KB
dianyuntu_yolo.py 9KB
dianyuntu.py 9KB
detect.py 8KB
autoanchor.py 7KB
wandb_utils.py 7KB
hubconf.py 5KB
experimental.py 5KB
google_utils.py 5KB
export.py 4KB
activations.py 2KB
log_dataset.py 2KB
stereoconfig_040_2.py 2KB
resume.py 1KB
cuda_test.py 1KB
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
datasets.cpython-36.pyc 33KB
datasets.cpython-37.pyc 33KB
datasets.cpython-38.pyc 32KB
general.cpython-36.pyc 19KB
general.cpython-38.pyc 19KB
general.cpython-37.pyc 19KB
plots.cpython-36.pyc 16KB
plots.cpython-37.pyc 16KB
plots.cpython-38.pyc 15KB
common.cpython-36.pyc 15KB
common.cpython-37.pyc 14KB
common.cpython-38.pyc 14KB
torch_utils.cpython-36.pyc 11KB
torch_utils.cpython-38.pyc 11KB
torch_utils.cpython-37.pyc 11KB
test.cpython-36.pyc 11KB
yolo.cpython-36.pyc 10KB
yolo.cpython-38.pyc 10KB
yolo.cpython-37.pyc 10KB
metrics.cpython-36.pyc 8KB
metrics.cpython-37.pyc 7KB
metrics.cpython-38.pyc 7KB
loss.cpython-36.pyc 6KB
autoanchor.cpython-36.pyc 6KB
autoanchor.cpython-37.pyc 6KB
autoanchor.cpython-38.pyc 6KB
experimental.cpython-36.pyc 6KB
experimental.cpython-37.pyc 6KB
experimental.cpython-38.pyc 6KB
stereo.cpython-36.pyc 4KB
dianyuntu_yolo.cpython-36.pyc 4KB
activations.cpython-37.pyc 3KB
activations.cpython-36.pyc 3KB
activations.cpython-38.pyc 3KB
google_utils.cpython-38.pyc 3KB
google_utils.cpython-36.pyc 3KB
google_utils.cpython-37.pyc 3KB
stereoconfig_040_2.cpython-36.pyc 1KB
stereoconfig_Bud.cpython-36.pyc 1KB
__init__.cpython-36.pyc 162B
__init__.cpython-36.pyc 161B
__init__.cpython-38.pyc 142B
__init__.cpython-38.pyc 141B
__init__.cpython-37.pyc 138B
__init__.cpython-37.pyc 137B
get_voc.sh 4KB
get_argoverse_hd.sh 2KB
userdata.sh 1KB
get_coco.sh 963B
mime.sh 780B
download_weights.sh 277B
requirements.txt 610B
additional_requirements.txt 105B
code.txt 103B
anchors.yaml 3KB
yolov5-p7.yaml 2KB
yolov5m6.yaml 2KB
yolov5x6.yaml 2KB
共 120 条
- 1
- 2
资源评论
- xmhld2023-03-12#运行顺畅,可以运行。基本没问题。
- reset20212023-02-28#内容与标题一致
iNBC
- 粉丝: 1w+
- 资源: 9
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- MATLAB simulink 仿真: 基于popov理论和模型参考自适应理论,辨识永磁同步电机参数(SPMSM)simulin
- 在线教育系统 基于Springboot和Mysql的在线教育系统代码 ,包括程序,中文注释,配置说明操作步骤
- 基于模型参考自适应控制的 SPMSM 无感矢量控制的MATLAB simulink仿真 速度控制 低速I F控制,中高速采
- 基于BERT-BILSTM-CRF进行中文命名实体识别python源码.zip
- 在线教育系统代码系统 Springboot在线教育系统,包括程序,中文注释,配置说明操作步骤
- MATLAB的人脸识别系统GUI设计.zip
- 基于Springboot和Vue的在线教育系统源码 在线教育系统代码,包括程序,中文注释,配置说明操作步骤
- MATLAB的汽车框定系统GUI设计.zip
- MATLAB的口罩识别预警系统GUI设计.zip
- 家庭自动化控制系统毕业设计: 这个系统将能够控制家中的灯光、温度以及安全系统,并且可以通过互联网进行远程控制 此外,系统还可以与
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功