# Road To Pixels
Welcome aboard. With the growing technologies out in the world, we have seen how important Image Processing has become. This repository provides a complete understanding of the practical implementation of all the concepts to be known for a developer to start their Image Processing journey.
## Contents
1. [Basics with Images](https://github.com/BhanuPrakashNani/Image_Processing#1-basics-with-images---averaging-images)
2. [Successive Rotations](https://github.com/BhanuPrakashNani/Image_Processing#2-successive-rotations---code)
3. [Interpolations](https://github.com/BhanuPrakashNani/Image_Processing#3-interpolations---code)
4. [Interpolations-Inverse Mapping](https://github.com/BhanuPrakashNani/Image_Processing#4-interpolation-inverse-mapping---code)
5. [Basic Transformations](https://github.com/BhanuPrakashNani/Image_Processing#5-basic-transformations---code)
6. [Perspective Transofrmation](https://github.com/BhanuPrakashNani/Image_Processing#6-perspective-transformation)
7. [Estimating the Transformation](https://github.com/BhanuPrakashNani/Image_Processing#7-est-transformation)
8. [Log and Contrast Stretching](https://github.com/BhanuPrakashNani/Image_Processing#8-log-and-linear-transformation)
9. [Shading Correction](https://github.com/BhanuPrakashNani/Image_Processing#9-shading-correction)
10. [Laplacian](https://github.com/BhanuPrakashNani/Image_Processing#10-laplacian---code)
11. [Laplacian+Gaussian](https://github.com/BhanuPrakashNani/Image_Processing#11-laplaciangaussian---code)
12. [Laplacian, Sobel, CannyEdge](https://github.com/BhanuPrakashNani/Image_Processing#12-laplacian-sobel-cannyedge---code)
13. [Sobel-X and Y](https://github.com/BhanuPrakashNani/Image_Processing#13-sobel-x-and-y---code)
14. [Histogram Equalisation](https://github.com/BhanuPrakashNani/Image_Processing#14-histogram-equalisation---code)
15. [Normalize Histogram](https://github.com/BhanuPrakashNani/Image_Processing#15-normalize-histogram---code)
16. [Image Temperature](https://github.com/BhanuPrakashNani/Image_Processing#16-image-temperature---code)
17. [Box Filter](https://github.com/BhanuPrakashNani/Image_Processing#17-box-filter---code)
18. [GaussianFilter+Kernels](https://github.com/BhanuPrakashNani/Image_Processing#18-gaussianfilterkernels---code)
19. [Morphological Processing](https://github.com/BhanuPrakashNani/Image_Processing#19-morphological-processing--code)
20. [Morphological Text Processing](https://github.com/BhanuPrakashNani/Image_Processing#20-morphological-text-processing---code)
21. [Morphological Fingerprint Processing](https://github.com/BhanuPrakashNani/Image_Processing#21-morphological-fingerprint-processing---code)
22. [Morphological Outline](https://github.com/BhanuPrakashNani/Image_Processing#22-morphological-outline---code)
23. [Capture Video Frames](https://github.com/BhanuPrakashNani/Image_Processing#23-capture-video-frames---code)
24. [Video background Subtraction](https://github.com/BhanuPrakashNani/Image_Processing#24-video-background-subtraction---code)
25. [VideoCapture_GoogleColab](https://github.com/BhanuPrakashNani/Image_Processing#25-videocapture_googlecolab---code)
26. [Contours-OpenCV](https://github.com/BhanuPrakashNani/Image_Processing#26-contours-opencv---code)
27. [Fitting Polygons](https://github.com/BhanuPrakashNani/Image_Processing#27-fitting-polygons---code)
28. [Hough Lines](https://github.com/BhanuPrakashNani/Image_Processing#28-hough-lines---code)
29. [Adaptive+Gaussian Thresholding](https://github.com/BhanuPrakashNani/Image_Processing#29-adaptivegaussian-thresholding---code)
30. [OTSU Thresholding](https://github.com/BhanuPrakashNani/Image_Processing#30-otsu-thresholding---code)
31. [Grabcut](https://github.com/BhanuPrakashNani/Image_Processing#31-grabcut---code)
32. [Discrete Fourier Transformation](https://github.com/BhanuPrakashNani/Image_Processing#32-discrete-fourier-transformation---code)
33. [OpenCV KMeans](https://github.com/BhanuPrakashNani/Image_Processing#33-opencv-kmeans---code)
34. [Object Movement Tracking](https://github.com/BhanuPrakashNani/Image_Processing#34-object-movement-tracking---code)
35. [Live Hand Gesture Recognition](https://github.com/BhanuPrakashNani/Image_Processing#35-live-hand-gesture-recognition---code)
Before we jump into the concepts, let us once have a look at the definition of Image Processing.
## A Glance into Image Processing
Image processing is often viewed as arbitrarily manipulating an image to achieve an aesthetic standard or to support a preferred reality. However, image processing is more accurately defined as a means of translation between the human visual system and digital imaging devices. The human visual system does not perceive the world in the same manner as digital detectors, with display devices imposing additional noise and bandwidth restrictions. Salient differences between the human and digital detectors will be shown, along with some basic processing steps for achieving translation. Image processing must be approached in a manner consistent with the scientific method so that others may reproduce, and validate one's results. This includes recording and reporting processing actions and applying similar treatments to adequate control images.[Src](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635309/)
There are two types of methods used for image processing namely, analog and digital image processing. Analog image processing can be used for hard copies like printouts and photographs. Various fundamentals of interpretation are used by the Image Analysts along with the visual techniques. Digital image processing deals with the manipulation of digital images through a digital computer. It is a subfield of signals and systems but focuses particularly on images. The three general phases that all types of data have to undergo while using digital techniques are
* Pre-processing
* Enhancement and Display
* Information Extraction.
![Fundamental Steps in DIP](https://github.com/BhanuPrakashNani/Image_Processing/blob/master/images/DIP.png)
Fundamental Steps in Digital Image Processing - Rafael Gonzalez - 4th Edition [Src](https://github.com/BhanuPrakashNani/Image_Processing/blob/master/Digital_Image_Processing%2C_4th%20Edition-Rafael%20Gonzalez.pdf)
**Important point** to note while going through any concept is that the image is considered on a greyscale since color increases the complexity of the model. One may want to introduce an image processing tool using gray level images because of the format of gray-level images because the inherent complexity of gray-level images is lower than that of color images. In most cases. after presenting a gray-level image method, it can be extended to color images.
For getting deeper insights into any of the concepts, I suggest going through [Digital Image Processing, Rafael C. Gonzalez • Richard E. Woods, 4th Edition](https://github.com/BhanuPrakashNani/Image_Processing/blob/master/Digital_Image_Processing%2C_4th%20Edition-Rafael%20Gonzalez.pdf)
From here on I will be referring Digital Image Processing as DIP.
**Disclaimer:** I am not the original author of the images used. They have been taken from various Image Processing sites. I have mentioned all of the referenced sites in resources. Pardon if I missed any.
The following is the order I suggest to look into the concepts.
### 1. Basics with Images - [Averaging Images](https://github.com/BhanuPrakashNani/Image_Processing/tree/master/Image%20Averaging)
Image averaging is a DIP technique that is used to enhance the images which are corrupted with random noise. The arithmetic mean of the intensity values for each pixel position is computed for a set of images of the same view field. The basic formula behind it is.
![Image Averaging over set of N images](https://github.com/BhanuPrakashNani/Image_Processing/blob/master/images/averaging.png)
### 2. Successive Rotations - [Code](https://github.com/BhanuPrakashNani/Image_Processing/tree/master/Su
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
使用OpenCV和Python的图像处理技术。_Python_HTML_下载.zip (239个子文件)
Aptfile 41B
home.css 453B
ezgif.com-video-to-gif.gif 9.56MB
index.html 1KB
ch.jpeg 59KB
chDistorted.jpeg 44KB
calvinHobbes.jpeg 13KB
pexels.jpeg 9KB
16.jpg 1.88MB
equilisedAutomated.jpg 635KB
equilised.jpg 635KB
contrast_stretch.jpg 564KB
warmed.jpg 519KB
log_transformed.jpg 387KB
laplacian.jpg 336KB
Laplacian.jpg 336KB
original.jpg 279KB
Contours on Adaptive Threshold Frames.jpg 260KB
Contours on Binary Threshold Frames.jpg 260KB
log.jpg 246KB
AM.jpg 213KB
Gaussian + Laplacian.jpg 207KB
AG.jpg 196KB
monarch.jpg 178KB
monarch.jpg 178KB
Adaptive Thresholding + Subtract Background Frame.jpg 175KB
Nearest Neighbour.jpg 130KB
SobelYChess.jpg 128KB
SobelXChess.jpg 124KB
Bicubic.jpg 122KB
SobelXLenna.jpg 119KB
SobelXLenna.jpg 119KB
idft.jpg 118KB
5.jpg 116KB
Bilinear.jpg 112KB
7.jpg 112KB
SobelYLenna.jpg 111KB
SobelYLenna.jpg 111KB
Contours Binary Rem Bg Frame.jpg 100KB
dilate.jpg 97KB
canny.jpg 96KB
Global.jpg 93KB
k=8.jpg 92KB
originallenna.jpg 89KB
image.jpg 87KB
k=5.jpg 86KB
hough.jpg 85KB
improved.jpg 83KB
CannyLenna.jpg 81KB
me.jpg 71KB
erode.jpg 71KB
page.jpg 69KB
Original.jpg 69KB
Background Subtractor.jpg 68KB
CannyChess.jpg 68KB
LargestContour.jpg 66KB
Contours.jpg 65KB
k=3.jpg 64KB
panda.jpg 62KB
pand.jpg 62KB
panda1.jpg 62KB
pand.jpg 62KB
panda.jpg 62KB
bg.jpg 60KB
messi.jpg 53KB
CannyFish.jpg 53KB
gray1.jpg 52KB
Otsus.jpg 52KB
blur1.jpg 52KB
binarythresh1.jpg 52KB
Contours.jpg 50KB
1.jpg 46KB
NearestNeighbour.jpg 42KB
Triangles.jpg 40KB
noisy_leaf.jpg 39KB
bubblingFish.jpg 38KB
sudoku.jpg 38KB
9-p.jpg 37KB
11.jpg 37KB
cut_messi.jpg 37KB
Threshold.jpg 33KB
DIP.jpg 29KB
Binary Thresholding on Frames.jpg 24KB
ch.jpg 24KB
Binary Thresholding on Frames + Subtract Background Frame.jpg 23KB
polygons.jpg 22KB
original.jpg 18KB
Translation.jpg 15KB
8.jpg 9KB
rotated90.jpg 8KB
rotated45.jpg 7KB
train-and-forecast-cash-weekly-sched.json 72KB
mPulse_SentimentExtraction_Final.json 40KB
vadar_sentiments.json 24KB
vaderSentiment_POSTagging_InpatientSurvey.json 20KB
VaderSentiment_POSTagging_Yelp.json 17KB
mPulse _ POS tagging _ Sentiments.json 17KB
POS_Tagger.json 16KB
Notebook 10.json 14KB
Notebook 12.json 13KB
共 239 条
- 1
- 2
- 3
资源评论
快撑死的鱼
- 粉丝: 2w+
- 资源: 9148
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- LabVIEW实现LoRa通信【LabVIEW物联网实战】
- CS-TY4-4WCN-转-公版-XP1-8B4WF-wifi8188
- 计算机网络期末复习资料(课后题答案+往年考试题+复习提纲+知识点总结)
- 从零学习自动驾驶Lattice规划算法(下) 轨迹采样 轨迹评估 碰撞检测 包含matlab代码实现和cpp代码实现,方便对照学习 cpp代码用vs2019编译 依赖qt5.15做可视化 更新:
- 风光储、风光储并网直流微电网simulink仿真模型 系统由光伏发电系统、风力发电系统、混合储能系统(可单独储能系统)、逆变器VSR+大电网构成 光伏系统采用扰动观察法实现mppt控
- (180014016)pycairo-1.18.2-cp35-cp35m-win32.whl.rar
- (180014046)pycairo-1.21.0-cp311-cp311-win32.whl.rar
- DS-7808-HS-HF / DS-7808-HW-E1
- (180014004)pycairo-1.20.0-cp36-cp36m-win32.whl.rar
- (178330212)基于Springboot+VUE的校园图书管理系统
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功