# Project AiAi
[![GitHub Commits Count](https://img.shields.io/github/commits-since/AiAiHealthcare/ProjectAiAi/0.0.svg?maxAge=300&label=Github%20Commits)](https://github.com/AiAiHealthcare/ProjectAiAi/graphs/punch-card)
AiAi.care project is teaching computers to "see" chest X-rays and interpret them how a human Radiologist would. We are using 700,000 labeled Chest X-Rays + Deep Learning to build an FDA ð approved, open-source screening tool for Tuberculosis and Lung Cancer. After an MRMC clinical trial, AiAi CAD will be distributed for free to emerging nations, charitable hospitals, and organizations like WHO ð
Our secondary goal is to open-source **'Medical Imagenet'** pretrained models and weights. Medical data is hard to obtain, so many current Radiology-AI papers rely on transfer-learning ImageNet weights. There are significant differences between ImageNet images (color, low-res, high-contrast) and Radiology images (grayscale, high-res, low-contrast), so we believe that our Medical Imagenet weights will improve sensitivity and specificity across the board for future research.
If you are looking for a non-technical introduction to Project AiAi, please [click here to visit https://AiAi.care website](https://AiAi.care). In case you were wondering about the project's name, AiAi stands for _AI Augmented Imaging_.
[![Follow Our Twitter Updates](https://img.shields.io/twitter/follow/AiAiHealthcare.svg?style=social&label=Follow&maxAge=3600)](https://twitter.com/AiAiHealthcare/)
[![Join Gitter Discussion](https://img.shields.io/gitter/room/AiAi-care/Lobby.svg?maxAge=3600)](https://gitter.im/AiAi-care/Lobby)
[![Website](https://img.shields.io/website-up-down-green-red/https/AiAi.care.svg?maxAge=3600)](https://AiAi.care/)
# Project Milestones
Here are [major milestones](https://github.com/AiAiHealthcare/ProjectAiAi/milestones) for the project and target completion dates:
1. :white_check_mark: ~200,000 X-Ray and CT Data Loading, Cleaning _(Completed Feb 1, 2017)_
1. :white_check_mark: Deep Learning Docker Image (**PyTorch**, HIPAA) _(Completed Feb 28, 2017 )_
1. :white_check_mark: Data Augmentation Tests : March 30, 2017 _(Completed May 2017)_
1. :white_check_mark: Level 1 Models : April 12, 2017 _(Completed May 2017)_
1. :white_check_mark: HIPAA IT Audit and Validation : December 30, 2017 _(Internal Audit Completed 2017)_
1. :white_check_mark: We got :sparkles:500,000+:sparkles: additional X-ray images! Merging this with original data. _(Completed May 2020)_
1. :soon: Experiements with DL architectures, activations, and augmentation: _(In Progress, ETA Q1 2021)_
1. Level 2/3 model ensembles and differential privacy (Detection, Classification) : _(In Progress, ETA Q2 2021)_
1. Build mobile-friendly front-end for AiAi CAD (Computer Aided Detection) : Q2 2021
1. PACS / VNA / DICOM / HL7 / EHR ingestion engine Q3 2021
1. MRMC clinical validation for FDA application : Q3 2021
# Donate your DL / FHIR / PACS Expertise
If you are a Machine Learning maestro, Kaggle king, or HL7 hacker then please check out our [KANBAN project tracker here](https://github.com/AiAiHealthcare/ProjectAiAi/projects/1?fullscreen=true). You can donate your time and expertise by contributing to any of the issues/tasks pinned on the KANBAN board.
# Contribute to Legal Strategy Wiki
Project AiAi is the first effort of its kind to donate an open-source, medical algorithm to the world. This presents some interesting legal challenges, so we have [set up a wiki page where lawyers can donate their time and advice for Project AiAi.](https://github.com/AiAiHealthcare/ProjectAiAi/wiki)
没有合适的资源?快使用搜索试试~ 我知道了~
AiAi.care 项目正在教计算机“看到”胸部 X 光片,并以人类放射科医生的方式解释它们_Dockerfile_代码_下载
共8个文件
dockerfile:4个
py:1个
license:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 15 浏览量
2022-07-02
23:07:23
上传
评论
收藏 21KB ZIP 举报
温馨提示
AiAi.care 项目正在教计算机“看到”胸部 X 光片,并以人类放射科医生的方式解释它们。我们正在使用 700,000 次胸部 X 光片 + 深度学习来建立 FDA经批准的用于结核病和肺癌的开源筛查工具。经过 MRMC 临床试验后,AiAi CAD 将免费分发给新兴国家,慈善机构…… 我们的次要目标是开源“Medical Imagenet”预训练模型和权重。医学数据很难获得,因此当前许多 Radiology-AI 论文都依赖于迁移学习 ImageNet 权重。ImageNet 图像(彩色、低分辨率、高对比度)和放射图像(灰度、高分辨率、低对比度)之间存在显着差异,因此我们相信我们的 Medical Imagenet 权重将全面提高灵敏度和特异性未来的研究。 更多详情、使用方法,请下载后阅读README.md文件
资源推荐
资源详情
资源评论
收起资源包目录
ProjectAiAi-master.zip (8个子文件)
ProjectAiAi
DLCode
Where_is_the_code.py 303B
Dockerfiles
1.Ubuntu.Dockerfile 2KB
3.AnaPy.Dockerfile 2KB
2.NVidiaAptGet.Dockerfile 3KB
3.IntelPy.Dockerfile 3KB
LICENSE 34KB
.gitignore 1KB
README.md 4KB
共 8 条
- 1
资源评论
快撑死的鱼
- 粉丝: 1w+
- 资源: 9149
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- C#MVC4通用企业门户网站源码数据库 SQL2008源码类型 WebForm
- python《基于ChineseBERT的中文文本纠错(监督学习模型)》+项目源码+文档说明
- 配置深度学习环境,里面有GPU和CPU的环境下的讲解!
- windows下C++动态库的封装和调用全部源码和工程
- 基于Huggingface的医疗领域命名实体识别+python项目源码+文档说明
- 三、计算机视觉-03LeNet5及手势识别案例《手势数据集》
- 智能车-车载工控机外部通信协议详解
- C#VS2012通用权限管理系统源码数据库 SQL2012源码类型 WebForm
- 基于多头选择和词-词关系分类的NER统一框架+python项目源码+文档说明
- 基于UNER-W2NER 的命名实体识别+python项目源码+文档说明
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功