![](http://i.imgur.com/EOowdSD.png)
[![PyPI version](https://badge.fury.io/py/lifelines.svg)](https://badge.fury.io/py/lifelines)
[![Build Status](https://travis-ci.org/CamDavidsonPilon/lifelines.svg?branch=master)](https://travis-ci.org/CamDavidsonPilon/lifelines)
[![Coverage Status](https://coveralls.io/repos/github/CamDavidsonPilon/lifelines/badge.svg?branch=master)](https://coveralls.io/github/CamDavidsonPilon/lifelines?branch=master)
[![Join the chat at https://gitter.im/python-lifelines/Lobby](https://badges.gitter.im/python-lifelines/Lobby.svg)](https://gitter.im/python-lifelines/Lobby)
[![DOI](https://zenodo.org/badge/12420595.svg)](https://zenodo.org/badge/latestdoi/12420595)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)
[What is survival analysis and why should I learn it?](http://lifelines.readthedocs.org/en/latest/Survival%20Analysis%20intro.html)
Survival analysis was originally developed and applied heavily by the actuarial and medical community. Its purpose was to answer *why do events occur now versus later* under uncertainty (where *events* might refer to deaths, disease remission, etc.). This is great for researchers who are interested in measuring lifetimes: they can answer questions like *what factors might influence deaths?*
But outside of medicine and actuarial science, there are many other interesting and exciting applications of this
lesser-known technique, for example:
- SaaS providers are interested in measuring customer lifetimes, or time to first behaviours
- sociologists are interested in measuring political parties' lifetimes, or relationships, or marriages
- analysing [Godwin's law](https://raw.githubusercontent.com/lukashalim/GODWIN/master/Kaplan-Meier-Godwin.png) in Reddit comments
- A/B tests to determine how long it takes different groups to perform an action.
*lifelines* is a pure Python implementation of the best parts of survival analysis. We'd love to hear if you are using *lifelines*, please leave an Issue and let us know your thoughts on the library.
## Installation:
You can install *lifelines* using
pip install lifelines
Or getting the bleeding edge version with:
pip install --upgrade --no-deps git+https://github.com/CamDavidsonPilon/lifelines.git
from the command line.
##### Installation Issues?
See the common [problems/solutions for installing lifelines](https://github.com/CamDavidsonPilon/lifelines/issues?utf8=%E2%9C%93&q=label%3Ainstallation+).
#### Running the tests
You can optionally run the test suite after install with
py.test
## lifelines Documentation and an intro to survival analysis
If you are new to survival analysis, wondering why it is useful, or are interested in *lifelines* examples, API, and syntax,
please check out the [Documentation and Tutorials page](http://lifelines.readthedocs.org/en/latest/index.html)
Example:
```python
from lifelines import KaplanMeierFitter
durations = [11, 74, 71, 76, 28, 92, 89, 48, 90, 39, 63, 36, 54, 64, 34, 73, 94, 37, 56, 76]
event_observed = [True, True, False, True, True, True, True, False, False, True, True,
True, True, True, True, True, False, True, False, True]
kmf = KaplanMeierFitter()
kmf.fit(durations, event_observed)
kmf.plot()
```
<img src="https://imgur.com/d4Gi5J0.png" width="600">
### Contacting & troubleshooting
- There is a [Gitter](https://gitter.im/python-lifelines/) channel available.
- Some users have posted common questions at [stats.stackexchange.com](https://stats.stackexchange.com/search?tab=votes&q=%22lifelines%22%20is%3aquestion)
- creating an issue in the [Github repository](https://github.com/camdavidsonpilon/lifelines).
### Roadmap
You can find the roadmap for lifelines [here](https://www.notion.so/camdp/6e2965207f564eb2a3e48b5937873c14?v=47edda47ab774ca2ac7532bb0c750559).
### Citing lifelines
You can use this badge below to generate a DOI and reference text for the latest related version of lifelines:
[![DOI](https://zenodo.org/badge/12420595.svg)](https://zenodo.org/badge/latestdoi/12420595)
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
资源分类:Python库 所属语言:Python 资源全名:lifelines-0.15.3.tar.gz 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
资源推荐
资源详情
资源评论
收起资源包目录
lifelines-0.15.3.tar.gz (53个子文件)
lifelines-0.15.3
MANIFEST.in 188B
PKG-INFO 5KB
lifelines
statistics.py 15KB
fitters
cox_time_varying_fitter.py 25KB
weibull_fitter.py 12KB
nelson_aalen_fitter.py 8KB
coxph_fitter.py 44KB
exponential_fitter.py 6KB
aalen_johansen_fitter.py 11KB
__init__.py 6KB
breslow_fleming_harrington_fitter.py 3KB
aalen_additive_fitter.py 19KB
kaplan_meier_fitter.py 7KB
generate_datasets.py 9KB
plotting.py 14KB
compat.py 98B
estimation.py 716B
__init__.py 592B
utils
__init__.py 56KB
progress_bar.py 2KB
version.py 88B
datasets
gbsg2.csv 21KB
canadian_senators.csv 159KB
CuZn-LeftCensoredDataset.csv 2KB
regression.csv 8KB
larynx.csv 1KB
g3.csv 580B
holly_molly_polly.tsv 180B
stanford_heart.csv 9KB
psychiatric_patients.csv 269B
waltons_dataset.csv 2KB
anderson.csv 580B
__init__.py 13KB
lung.csv 9KB
static_test.csv 101B
kidney_transplant.csv 13KB
panel_test.csv 307B
recur.csv 24KB
gehan.dat 275B
dfcv_dataset.py 3KB
dd.csv 262KB
divorce.dat 188KB
lymphoma.csv 615B
rossi.csv 8KB
LICENSE 1KB
setup.cfg 38B
lifelines.egg-info
PKG-INFO 5KB
requires.txt 51B
SOURCES.txt 2KB
top_level.txt 10B
dependency_links.txt 1B
setup.py 1KB
README.md 4KB
共 53 条
- 1
资源评论
- weixin_412567652024-07-03支持这个资源,内容详细,主要是能解决当下的问题,感谢大佬分享~
- m0_551647432022-06-12用户下载后在一定时间内未进行评价,系统默认好评。
挣扎的蓝藻
- 粉丝: 14w+
- 资源: 15万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 客户需求快速小程序项目开发技巧
- java项目,课程设计-医疗服务系统.zip
- YOLO 注释风力涡轮机表面损坏-以 YOLO 格式注释风力涡轮机表面损伤 一万六千多文件
- 第一个适用于 Java 的 REST API 框架.zip
- Nvidia GeForce GT 1030显卡驱动(Win7)
- TIA PORTAL V17 UPD8- 更新包(最新版本2024.09)-链接地址.txt
- 示例应用程序展示了客户端和服务器上 JavaFX 和 Spring 技术的集成.zip
- Screenshot_2024-11-25-14-29-06-21.jpg
- MagicEXIFTool.zip
- fontawesome-webfont.woff
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功