<p align="center">
<a href="https://williamfalcon.github.io/test-tube/">
<img alt="react-router" src="https://raw.githubusercontent.com/williamfalcon/test-tube/master/imgs/test_tube_logo.png" width="50">
</a>
</p>
<h3 align="center">
Test Tube
</h3>
<p align="center">
Log, organize and parallelize hyperparameter search for Deep Learning experiments
</p>
<p align="center">
<a href="https://badge.fury.io/py/test-tube"><img src="https://badge.fury.io/py/test-tube.svg" alt="PyPI version" height="18"></a>
<a href="https://travis-ci.org/williamFalcon/test-tube"><img src="https://travis-ci.org/williamFalcon/test-tube.svg?branch=master"></a>
<a href="https://williamfalcon.github.io/test-tube/"><img src="https://readthedocs.org/projects/test-tube/badge/?version=latest"></a>
<a href="https://github.com/williamFalcon/test-tube/blob/master/LICENSE"><img src="https://img.shields.io/badge/License-MIT-yellow.svg"></a>
</p>
## Docs
**[View the docs here](https://williamfalcon.github.io/test-tube/)**
---
Test tube is a python library to track and parallelize hyperparameter
search for Deep Learning and ML experiments. It's framework agnostic and
built on top of the python argparse API for ease of use.
``` {.bash}
pip install test_tube
```
---
### Main test-tube uses
- [Parallelize hyperparameter
optimization](https://williamfalcon.github.io/test-tube/hyperparameter_optimization/HyperOptArgumentParser/)
(across multiple gpus or cpus).
- [Parallelize hyperparameter
optimization](https://williamfalcon.github.io/test-tube/hyperparameter_optimization/HyperOptArgumentParser/)
across HPC cluster using SLURM.
- Log experiment hyperparameters and experiment data.
[Experiments](https://williamfalcon.github.io/test-tube/experiment_tracking/experiment/)
across models.
- Visualize with [tensorboard](https://www.tensorflow.org/guide/summaries_and_tensorboard)
Compatible with Python any Python ML library like Tensorflow, Keras, Pytorch, Caffe, Caffe2, Chainer, MXNet, Theano, Scikit-learn
---
### Examples
The Experiment object is a subclass of Pytorch.SummaryWriter.
**Log and visualize with Tensorboard**
```{.python}
from test-tube import Experiment
import torch
exp = Experiment('/some/path')
exp.tag({'learning_rate': 0.02, 'layers': 4})
# exp is superclass of SummaryWriter
features = torch.Tensor(100, 784)
writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))
# simulate training
for n_iter in range(2000):
e.log({'testtt': n_iter * np.sin(n_iter)})
# save and close
exp.save()
exp.close()
```
```{.bash}
pip install tensorflow
tensorboard --logdir /some/path
```
**Run grid search on SLURM GPU cluster**
``` {.python}
from test_tube.hpc import SlurmCluster
# hyperparameters is a test-tube hyper params object
hyperparams = args.parse()
# init cluster
cluster = SlurmCluster(
hyperparam_optimizer=hyperparams,
log_path='/path/to/log/results/to',
python_cmd='python3'
)
# let the cluster know where to email for a change in job status (ie: complete, fail, etc...)
cluster.notify_job_status(email='some@email.com', on_done=True, on_fail=True)
# set the job options. In this instance, we'll run 20 different models
# each with its own set of hyperparameters giving each one 1 GPU (ie: taking up 20 GPUs)
cluster.per_experiment_nb_gpus = 1
cluster.per_experiment_nb_nodes = 1
# run the models on the cluster
cluster.optimize_parallel_cluster_gpu(train, nb_trials=20, job_name='first_tt_batch', job_display_name='my_batch')
# we just ran 20 different hyperparameters on 20 GPUs in the HPC cluster!!
```
**Optimize hyperparameters across GPUs**
``` {.python}
from test_tube import HyperOptArgumentParser
# subclass of argparse
parser = HyperOptArgumentParser(strategy='random_search')
parser.add_argument('--learning_rate', default=0.002, type=float, help='the learning rate')
# let's enable optimizing over the number of layers in the network
parser.opt_list('--nb_layers', default=2, type=int, tunable=True, options=[2, 4, 8])
# and tune the number of units in each layer
parser.opt_range('--neurons', default=50, type=int, tunable=True, low=100, high=800, nb_samples=10)
# compile (because it's argparse underneath)
hparams = parser.parse_args()
# optimize across 4 gpus
# use 2 gpus together and the other two separately
hparams.optimize_parallel_gpu(MyModel.fit, gpu_ids=['1', '2,3', '0'], nb_trials=192, nb_workers=4)
```
Or... across CPUs
``` {.python}
hparams.optimize_parallel_cpu(MyModel.fit, nb_trials=192, nb_workers=12)
```
You can also optimize on a *log* scale to allow better search over
magnitudes of hyperparameter values, with a chosen base (disabled by
default). Keep in mind that the range you search over must be strictly
positive.
``` {.python}
from test_tube import HyperOptArgumentParser
# subclass of argparse
parser = HyperOptArgumentParser(strategy='random_search')
# Randomly searches over the (log-transformed) range [100,800).
parser.opt_range('--neurons', default=50, type=int, tunable=True, low=100, high=800, nb_samples=10, log_base=10)
# compile (because it's argparse underneath)
hparams = parser.parse_args()
# run 20 trials of random search over the hyperparams
for hparam_trial in hparams.trials(20):
train_network(hparam_trial)
```
### Convert your argparse params into searchable params by changing 1 line
``` {.python}
import argparse
from test_tube import HyperOptArgumentParser
# these lines are equivalent
parser = argparse.ArgumentParser(description='Process some integers.')
parser = HyperOptArgumentParser(description='Process some integers.', strategy='grid_search')
# do normal argparse stuff
...
```
### Log images inline with metrics
``` {.python}
# name must have either jpg, png or jpeg in it
img = np.imread('a.jpg')
exp.log('test_jpg': img, 'val_err': 0.2)
# saves image to ../exp/version/media/test_0.jpg
# csv has file path to that image in that cell
```
## Demos
- [Hyperparameter optimization for PyTorch across 20 cluster GPUs](https://github.com/williamFalcon/test-tube/blob/master/examples/pytorch_hpc_example.py)
- [Hyperparameter optimization across 20 cluster CPUs](https://github.com/williamFalcon/test-tube/blob/master/examples/hpc_cpu_example.py)
- [Experiments and hyperparameter optimization for tensorflow across 4 GPUs simultaneously](https://github.com/williamFalcon/test-tube/blob/master/examples/tensorflow_example.py)
## How to contribute
Feel free to fix bugs and make improvements! 1. Check out the [current
bugs here](https://github.com/williamFalcon/test-tube/issues) or
[feature
requests](https://github.com/williamFalcon/test-tube/projects/1). 2. To
work on a bug or feature, head over to our [project
page](https://github.com/williamFalcon/test-tube/projects/1) and assign
yourself the bug. 3. We'll add contributor names periodically as people
improve the library!
## Bibtex
To cite the framework use:
@misc{Falcon2017,
author = {Falcon, W.A.},
title = {Test Tube},
year = {2017},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/williamfalcon/test-tube}}
}
## License
In addition to the terms outlined in the license, this software is U.S. Patent Pending.
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
资源分类:Python库 所属语言:Python 资源全名:test_tube-0.6.7.1.tar.gz 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
资源推荐
资源详情
资源评论
收起资源包目录
test_tube-0.6.7.1.tar.gz (20个子文件)
test_tube-0.6.7.1
PKG-INFO 428B
setup.cfg 358B
test_tube.egg-info
PKG-INFO 428B
requires.txt 92B
SOURCES.txt 487B
top_level.txt 19B
dependency_links.txt 1B
examples
hpc_cpu_example.py 3KB
__init__.py 0B
pytorch_hpc_example.py 3KB
tensorflow_example.py 2KB
setup.py 791B
test_tube
hpc.py 19KB
hyper_opt_utils
__init__.py 0B
strategies.py 3KB
__init__.py 184B
log.py 16KB
hyperopt.py 7KB
argparse_hopt.py 16KB
README.md 7KB
共 20 条
- 1
资源评论
挣扎的蓝藻
- 粉丝: 14w+
- 资源: 15万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 年终奖发放表及个税统计表(模板).xls
- 企业年终奖发放统计表格(各大部门).xlsx
- 年终奖金相关表格(个税计算器、计算方法、相关政策).xlsx
- 年收入测算标准版(月薪、年终奖).xlsx
- 工资年终奖优化公式(终极版).xls
- 员工年终奖发放表及发放标准.xls
- 某集团有限公司企业标准:薪酬管理制度(范本) .doc
- 公司饭堂管理规定.docx
- 公司食堂菜谱.doc
- 公司食堂管理办法.doc
- 公司食堂管理制度.doc
- 公司食堂管理制度(最新).doc
- 公司员工食堂管理规定办法.doc
- 公司员工食堂管理制度.doc
- 基于51单片机空气净化器控制系统设计报告
- 动漫排名数据集,最受欢迎的动漫数据,top10000动画数据集
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功